チタンの結晶方位密度計算

2018年12月08日 *HelperTex Office* 概要

T i 及びT i 合金の集合組織の解析として2014年10月14日に

表面加工、極点測定、計算defocus補正、ODF解析、VolumeFraction計算をまとめ、 技術資料としてホームページに掲載しました。

新しいサイトでは

http://helpertex.sakura.ne.jp/Soft/DOC/Doc.html

にあります。

この資料から、GPODFDisplay ソフトウエアによる結晶方位密度の計算方法を紹介します。 入力データ B-Type-ODF (大阪府立大学井上先生資料に合わせる)

計算方位

大阪府立大井上先生「チタンおよびチタン合金の集合組織」より

表1 チタンおよびチタン合金のα相集合組織における主要方位とそのオイラー角

集合組織のタイプ	c軸の向き	方位 (hkil) [uvtw]	$arphi_1$.	Φ	φ_2	(hkl)[uvw
Basal	ND に平行	(0001) [10Ī0] (0001) [2ĪĪ0]*	0° 30°	0° 0°	0° 0°	(001)[210 (001)[100
T (Transverse)	TDに平行	(Ī2Ī0) [10Ī0] (01Ī0) [2ĪĪ0]*	0° 0°	90° 90°	0° 30°	(-120)[210 (010)[100
R (RD)	RDに平行	(Ī2Ī0) [0001] (01Ī0) [0001]*	90° 90°	90° 90°	0° 30°	<pre>(-120)[001] (010)[001] (-125)[210] (013)[100] (-124)[210] (025)[100] (-128)[0-41] (014)[-2-41] (-126)[0-31] (013)[-3-62]</pre>
TD-split	NDからTDの方へ ±30°~40°傾く	(Ī2Ī5) [10Ī0] (01Ī3) [2ĪĪ0]* (Ī2Ī4) [10Ī0] (02Ī5) [2ĪĪ0]*	0° 0° 0°	32. 4° 31. 4° 38. 4° 36. 2°	0° 30° 0° 30°	
RD-split	NDからRDの方へ ±20°~30° 傾く	$\begin{array}{c} (\overline{1}2\overline{1}8) & [4\overline{8}43] \\ (01\overline{1}4) & [0\overline{2}21] \\ (\overline{1}2\overline{1}6) & [1\overline{2}11] \\ (01\overline{1}3) & [0\overline{3}32] \end{array}$	90° 90° 90° 90°	21. 6° 24. 6° 27. 9° 31. 4°	0° 30° 0° 30°	

(hkil)[uvtw]の欄において、*印の方位はその上の方位との間に [0001] 軸まわりの30°回転関係が成立する。

LaboTex B-Type解析結果の読み込み

0 ψ2=0->60 step=5.0

入力データ

上書きし、再度読み込むと指数から再計算されたEuler角度で表示

で結晶方位計算Listを表示

計算List

	labotex.csv - 火モ帳
ファイル(F) 編集(E) 書式(O) 表	示(V) ヘルプ(H)
<pre>{hktl}<uvtw>,labotex {0001<10-10>,1.34 {0001<2-1-10>,2.2 {-12-10}<10-10>,1.89 {01-10<2-1-10>,0.71 {-12-10<0001>,0.54 {01-10<0001>,0.75 {-12-15}<10-10>,3.68 {01-13<2-1-10>,2.11 {-12-14<10-10>,4.14 {02-25}<2-1-10>,1.69 {-12-18}<4-843>,2.5 {01-14}<0-221>,1.03 {-12-16}<1-211>,1.6</uvtw></pre>	

hkluvwlistDisplay ソフトウエアで表示

<u>M</u>		hkluvwlist[Display 1.03T[19/03/31] by CTR			_ 🗆 🗙
File DISPSample Help	<u></u>		開く		×	
*	ファイルの場所(1):	🍌 CW	Ŷ	🕐 😰 🛄 -)F
	最近使った項	Iabotex.csv				DF
F)F
E	デスクトップ					DF
	Kata di uk					DF
F						DF
	PC					DF
		ファイル名(N):	labotex.csv		厭)F
MakeCSVFile Load	*9PJ=9 -	ファイルのタイプ(T):	*csv,*CSV,*Csv	~	取消	kluvwlistDisplayGraph

List 表示は最大8本の結晶方位密度 List を表示します。

$\{-1\ 2-1\ 4\}$ < 1 0 - 1 0 > の方位位置

22		GPODEDIsplay 1
File	Titanium-9008517-COD I	Btype View SM=5(5) S
	30DF	-久O\材料-TiUIS2種
	ALLODF	L KAN
	Hexagonal	
	CrystalOrientation	155

HexaConvert 1.10ST[19/03/31] by CT	R – 🗆 🗙
File Step Help	
A □ X-Axis[100] ([2-1-10])	10])
MIller Notation (3Axis Notation)	hkluvw
Miller Bravais Notation(4 Axis Notation)	
	hkil uvxw
Euler(p1Fp2) 90.0 24.627 30.0	
Material select	
Titanium-9008517-COD.TXT	
c/a 1.588 Input w2 Angles 0	Calc
DISP	
Position 10 V Disp size 200	
BG Corr Black Y Line size 1.0	MINUS
OK Return Structure	
	$\lambda \pi h$
/	方位面がはみ出る場合、MINUSで再描画
(-1.21.4)[1.01.0]f1=0.0.F=38.5.f2=0.0 ×	
	▲ (-1,2,-1,4)[1,0,-1,0]f1=0.0,F=38.5,f2=0.0

Return Structureで

又、ODF図上にマウスカーソルを移動させると、結晶方位計算を行う。

Hexagonalでは、OrientationDisplayのToolも併せてご使用下さい。

🛛 OrientationDisplayTools 1.11ST[19/03/31] by CTR 😑 🗖 🔀						
File Help						
General Orientation Display {hkl} <uw></uw>	OrientationDisplay	Orientation Disp				
Cubic Orientation Display {hkl} <uvw></uvw>	NewCubicCODisp	Orientation Disp				
Hexagonal Orientation Display {hkl} <uvw></uvw>	HexaConvert	Orientation Disp				
Cubic,Tetragonal,Orthorombic {hklKuvw>	CrystalOrientationDisp	Orientation Disp				
Cubic {hklKuvw>	CrystalRotation	Orientation Disp				

ソフトウエアは全てCTRソフトウエアに含まれます。