極点データ処理、VolumeFraction計算、シュミット因子計算 アルミニウムH材、O材のシュミット因子計算

> 2021年09月07日 *HelperTex Office*

- 1. Sample (アルミニウムH材)
- 2. アルミニウム粉末 (random)
 - 2. 1 r a n d o m 試料からd e f o c u s 補正曲線作成
 - 2. 2 r a n d o m試料データ処理
- 3. Sample (H材) データ処理
- 4. LaboTex入力データ作成
- 5. LaboTexODF解析
 - 5. 1入力極点図とODF解析後の極点図からRp%計算
 - 5. 2 VolumeFraction評価
 - 5. 3 {301} <-103>を追加してVolumeFraction計算
 - 5. 4DataBaseに2方位追加したVolumeFraction計算
 - 5. 5入力極点図から計算した ODF 図の極点図とVF%の極点図比較
- 6. DataBaseに2方位追加したVolumeFractionからシュミット因子計算
- 7. Sample (アルミニウムO材)
- 8. Sample (O材) データ処理
- 9. LaboTex入力データ作成
- 10. LaboTexODF解析
 - 10.1入力極点図とODF解析後の極点図からRp%計算
 - 10. 2VolumeFraction評価
 - 10.3 {114} <-1-72>を追加してVolumeFraction計算
 - 10.4入力極点図から計算したODF図の極点図とVF%の極点図比較
- 11. DataBaseに1方位追加したVolumeFractionからシュミット因子計算

バックグランドが非常に小さいー>random成分なし

2. アルミニウム粉末 (random)

試料を煽ったα=15度のバックグランドが上がり気味のため、データ処理で修正を行う。

2. 1 r a n d o m 試料からd e f o c u s 補正曲線作成

バックグランド修正モード

M ODFPoleFigure2 3.97T[21/12/31] by CTR File Linear(absolute)3D ToolKit Help InitSet BGMode Defocus Condition Free Overlar Files select Measure **2** ASC(RINT-PC) \sim 111.ASC 201 Straight(Option) Calcration Condition C:¥CTR¥DATA¥Alumini Defocus(Option) Previous Next Backgro \checkmark 0

Deale	wayd dalata wada		11	
	groud delete mode		Measure(Calc)	
\checkmark	💿 DoubleMode 🔵 Single	eMode 🔘 LowMode 🌾	A diamina and a second	BG defocus DSH1
	⊙ Minimum(αβ)	◯ MinimumAverage(a	Minimum >	Trans blinds angle
Peak :	slit 7.0 mm BG Slit	7.0 mm 🗹 PeakS	All background	deg. 90.0 deg.

バックグランドプロファイルの修正

2. 2 r a n d o m 試料データ処理

🖉 ODFPoleFigure2 3.97T[21/12/31] by CTR — □ 🗙
File Linear(absolute)3D ToolKit Help InitSet BGMode Defocus Condition Free OverlapRevision MinimumMode Rp% Normalization
Files select ASC(RINT-PC) V IIIASC 200ASC 220ASC
Calcration Condition Previous Next C#CTR#DATA#Aluminum-H=O#Al_random#220ASC Change
Backgroud delete mode
🗹 💿 DoubleMode 🔿 SingleMode 🔿 LowMode 🔿 HighMode 🔿 Nothing 🛛 BG defocus DSH1.2mm+Schulz+RSH5mm 🗸 🕅 Minimum mo
O Minimum(α β) O MinimumAverage(α)X 0.5 Trans blinds angle 30.0 Peak slit 7.0 mm Peak Slit / BGS BG Scope 80.0 deg. 90.0 deg. Set Disp αInhibit
/ AbsCalc
Ref Trans Schulz reflection method V Change Absorption coefficien 133.0 1/cm Thickness 0.2 Cm V Set 2Theta 65.18 deg. () 1/Kt Profile
Defocus file Select Trasmission defocus HKL+T
Defocus(1) functions file Image: Constraint of the set of
O Defocus(3) function files folder(Calc unbackdefocus) BB185mm V Limit Alfa Defocus value Free(LimitValue=0.0) V
Defocus(2) function files folder(Calc backdefocus) DSH12mm+Schulz+RSH5mm DSH12mm+Schulz+RSH5mm Profile
Smoothing for ADC Smoothing for ADC Cancel Calc Connect Connec
After connection ValueODFVF-A ValueODFVF-A
CTRHome : C: Select crystal : Cubic 21/07/23

バックグランド削除+規格化

R p %

d e f o c u sデータ登録

-Defocus file Select Trasmission defocus HKL+T

O Defocus(1) functions file	2	C:¥CTR¥DATA¥Aluminum-H-O¥Al_random¥defocus¥DEFOCUS_F.TXT
Make defocus function files by	y TXT2	Files Vormalization degree of a polynomial

3. Sample (H材) データ処理

ODFPoleFigure2 3.97T[21/12/31] by CTR ODFPoleFigure2 3.97T[21/12/31] by CTR File Linear(absolute)3D ToolKit Help InitSet BGMode Defocus Condition Free OverlapRevision MinimumMode Rp% Normalization
Files select ASC(RINT-PC) V IIIASC 200 ASC 220 ASC
Calcration Condition Previous Next C*CTR*DATA*Aluminum-H=0*Aluminum-H#111ASC htl
Backgroud delete mode Backgroud delete mode DoubleMode SingleMode LowMode HighMode Nothing BG defocus DSH12mm+Schulz+RSH5mm Minimum mo- Minimum(α β) MinimumAverage(α)X 0.5 Trans blinds angle 30.0 Peak slit 7.0 mm BG Slit 7.0 mm PeakSlit / BGS BG Scope 80.0 deg. 90.0 deg. Set Disp α/Inhibit
Ref Trans Schulz reflection method Change Absorption coefficien 133.0 1/cm Thickness 0.2 cm Set 2Theta 38.5 dee. 1/kt Profile Defocus file Select Trasmission defocus HKL+T Image: C#CTR#DATA#Aluminum-H-O#Alyrandom#defocus#DEFOCUS_F.TXT Image: C#CTR#DATA#Aluminum-H-O#Alyrandom#defocus#DEFOCUS_F.TXT Image: C#CTR#DATA#Aluminum-H-O#Alyrandom#defocus#DEFOCUS_F.TXT Make defocus function files by TXT2 Files Image: Normalization degree of a polynomial Image: TextDisp Defocus(3) function files folder(Calc unbackdefocus) BB185mm Imit Alfa Defocus value Free(LimitValue=0.0) Imit Alfa Defocus value Free(LimitValue=0.0) Imit Alfa Defocus value Free(LimitValue=0.0) Imit Alfa Defocus value Imit Alfa Defocus value Free(LimitValue=0.0) Imit Alfa Defocus value Imit Alfa Defocus value Imit Alfa Defocus value Free(LimitValue=0.0) Imit Alfa Defocus value Imit Alfa Defocus value
Smoothing for ADC OutFiles Cancel Cancel Cancel Cancel Cancel Connect Oycles 5 Weight 6 Disp OutFiles OutFiles Exit&ODF ODF After connection ValueODFVF-B ValueODFVF-A
Filemake success !! CTRHome : C: Select crystal : Cubic 21/07/23
A.66(3883,1) − □ × A.02(1850,1) − □ × A.7.24(1306.2) − □ ×

R p %が最小に調整する。

d e f o c u s は補正されています。

4. LaboTex入力データ作成

Material Aluminum.txt			Initialize Start
Structure Code(Symmetries after Schoenfiles)	7 - 0 (cubi	c) ~	• getHKL<-Filename
a 1.0 <=b 1.0 <=c 1.0 alpha 90.0	beta 90	1.0 gamm 90.0	🚅 AllFileSelect
F Holder C:¥CTR¥DATA¥Aluminum-H-O¥Aluminum-H			
'F Data SelectFile(TXT(b,intens),TXT2(a,b,intens.))	h,k,l	2Theta Alpha scope	AlphaS AlphaE Select
2111_chB02D1CAS_2.TXT	1,1,1	38.5 0.0->75.0	0.0 75.0
200_chB02D1CAS_2.TXT	2,0,0	44.73 0.0->75.0	0.0 75.0
220_chB02D1CAS_2.TXT	2,2,0	65.1 0.0->75.0	0.0 75.0
2	2,1,0	0.0	0.0 0.0
	2,1,1	0.0	0.0 0.0
Ê	3,1,1	0.0	0.0 0.0
	4,0,0	0.0	0.0 0.0
 ⊯	3,3,1	0.0	0.0 0.0
	4,2,2	0.0	0.0 0.0
	5,1,1	0.0	0.0 0.0
	5,2,1	0.0	0.0 0.0
È	5,3,1	0.0	0.0 0.0
Comment 111_chB02D1CAS_2.TXT 200_chB02D1CAS_2	.TXT 220_chB02[DICAS_2.TXT	
CenterData		Labotex(E	PF),popLA(RAW) filename
Symmetric type Full Average	Epf file s	ave AI-3P	

5. LaboTexODF解析

入力データ

ODF 解析後の極点図

5. 1入力極点図と ODF 解析後の極点図から R p %計算

R p %= 2. 2%で入力データは良好、更にODF解析のM i n = 0. 000 で r a n d o m 方位なし R p %が大きい場合、入力データに異常があります。

ODFをExportしGPODFDisplayでRandomLevel評価

若し、random成分が存在していれば、方位密度1.0以下にrandomのピークが 形成されるが、ExportされたODF図から、0位置にピークが形成されているため randomは0%である。

Max=0.0 r a n d o m = 0%

 Average=0.12(0.97)
 1.0以下の平均値は0.12
 全ての平均値0.97

 datanumber=4911(75.6%)
 方位密度1.0以下が4911点(割合)

 4911/(19x19x18)x100%

5. 2 VolumeFraction評価

backgroundはrandomを含まないその他の方位である。

{301} <-103>が検索されていない

極点図から ODF 解析結果

VF%から計算した ODF 図

左右同じODF図になるように方位を追加します。 DataBaseに $\{301\} < -103 > 追加$

5. 3 {301} <-103>を追加してVolumeFraction計算

Quantitative Analysis - Model Functions Method - Project: AI Sample:AI-3P Job:1 X												
Crystal S O	iymmetry S (Cubic)	Sample Syl Orth	mme norha	etry ombic	Ŧ	Gri	d Cells for (Dutput ODF	0	-	Step Diagram Range +/-	0.50
100.0% Misfit Good Backgr. Diff.	Component No 1.		10	0.0%		Compor	nent No 1.		100.0%	5	Component No 1.	<mark>۹</mark> ۲
-45	5.0	45	0	-45.0				45	0	-45.0	ס	45.0
No	Texture Component		On	Distributior	n <mark>FW</mark>	нм 🖗	г₩нмФ	FWHM 🖗	Volume Fraction		Show Sym. Eq.	
1	3 0 1 }< -1 0 3 >	-	⊡	Gauss 🔄	/ 1	5.6	25.5	18.2	16	%	{301}<-103>	•
2 { 1	1 1 0 }< 1 -1 2 > brass	-	⊡ [Gauss 🕞	- 1	8.7	18.5	18.3	13	%	Calculation Mode	
3 { 1	1 3 2}< 6 -4 3>S-1	-	⊡	Gauss 🔄	2	25.7	19.7	20.2	5	%	Automatic	Manual
4 { 2	2 3 1 }< 3 -4 6 > S-2	-	⊡	Gauss 🔄	2	20.2	17.8	19.9	14	%		
5 { 2	2 3 1 }< -3 4 -6 > S-4	-	⊡	Gauss 🔄	2	20.1	15.2	19.6	14	%	Max. Iteration Number :	1,000 🛟
6 { 2	2 1 3}< -3 -6 4> S-3	-	⊡	Gauss 🔄	2	20.9	20.3	23.5	2	%	Max. Fit Error % (*1000) :	100 🛟
7 { 0	0 1 3}< 1 0 0>	-	⊡	Gauss 🔄	1	8.1	22.3	18.4	12	%	It was from a	223
8 { 1	1 2 3}< 4 1-2> R	~	⊡	Gauss 🔄	1	9.9	19.8	20.6	13	%		05014
9 { 1	1 1 0 }< 0 0 1 > goss	-	₽	Gauss 🔄	2	2.7	21.9	19.5	5	%	Fit Error% (*1000) :	85314.
10 { 1	1 1 2 }< 1 1 ·1 > copper	-	⊡	Gauss 🔄	2	3.7	19.2	21.1	5	%	Fit Calculation F	rogress
☑ Max. Linearity	Orientation Set Set from	Database	e (sor	rt by 💌	Save	Curren	t Set	ackground	1	%		
Change Ir	nitial Parameters Fix Angles	Fix Fra	ctior	ns	Star	rt Volum	e Fraction	Calculation		View	Report Exit and Show	Exit

{139} <0-31>も検出されていないので追加

{139} <0-31>をDataBaseに追加

5. 4DataBaseに2方位追加したVolumeFraction計算

Quantitative Analysis - Model Functions Method - Project: AI Sample:AI-3P Job:1									
Crystal Symmetry Sample	Symmetry Gri	Grid Cells for Output ODF 5.0*5.0 Diagram Range +/- 45.0							
Component No 1. Component No 1. Component No 1. 100.0%									
-45.0	45.0 -45.0	45.0	-45.0 45.0						
No Texture Component	On Distribution FYHM 🖗	FWHM∯ FWHM∯2 Volume Fraction	Show Sym. Eq.						
1 {301}<-103>	🗸 🕅 Gauss 👻 15.2	27.6 18.0 13	% {301}<-103> ▼						
2 { 1 1 0 }< 1 -1 2> brass	🗸 🗹 Gauss 🖵 18.3	18.7 18.5 13	[%] Calculation Mode						
3 {1 3 2}< 6 -4 3> S-1	🗸 🔽 Gauss 👻 18.9	19.3 23.5 7	% • Automatic C Manual						
4 {231}<3-46>S-2	🗸 🗹 Gauss 👻 24.7	17.2 20.0 12	%						
5 {2 3 1}<-3 4-6>S-4	🗸 🗹 Gauss 👻 19.3	21.5 20.9 6	% Max. Iteration Number : 🚺 1,000 🚔						
6 {213}<-3-64>S-3	🗸 🗹 Gauss 👻 24.6	15.7 19.2 18	炎 Max. Fit Error % (*1000) : 🚺 100 🗦						
7 {139}<0-31>	🗸 🔽 Gauss 👻 21.1	26.9 18.2 11	%						
8 {013}<100>	🗸 🗹 Gauss 👻 16.4	22.4 15.7 9	% Iteration : 623						
9 {123}<41-2> R	🗸 🔽 Gauss 👻 21.8	20.8 21.7 4	% Fit Error% (*1000) : 83913.						
10 { 1 1 0 }< 0 0 1 > goss	🗸 🗹 Gauss 👻 22.7	21.6 20.8 6	% Fit Calculation Progress						
Max. Linearity Orientation Set Set from Datab	Imax Orientation Set Set from Database (sort by save Current Set) Background								
Change Initial Parameters Fix Angles Fix	Fractions Start Volum	e Fraction Calculation	View Report Exit and Show Exit						

VF%から計算した ODF 図

入力極点図から計算した ODF から計算した極点図

VF%から計算した極点図

■ 0.2 Mm=0.022 Max=3.819 2021/07/23 主要な極密度は一致しています。

6. DataBaseに2方位追加したVolumeFractionからシュミット因子計算 アルミニウムH材

FCCSchmidFactorCalc 1.11T[21/12/31] by CTR			_	
File Help				
InputFile(TXT)				
LaboTex VolumeFraction(100%VFMode)	~ 🖻		1	
C:¥LaboTex2¥USER¥AI.LAB¥O-Cubic.LAB¥AI.LAB¥AI-	3P.LAB¥Job04¥AI-3P.POD			Disp
Data input				
[th k l} or lh k l] [th k lKu v w>	phi1 P	HI phi2 — FRo	00	
ND Input	Input		5 ~	Input
		[
(3 0 1)< 1 0 3> 13 21	Calc result	Vf(%)	Sch	S*Vf/ "
1 1 01<1 -1 2> 12 95	0			
{1 3 2}<6 -4 3> 7 28	{3 0 1}<-1 0 3>	13.21	0.489	0.064
{2 3 1}<3 -4 6> 12 08	{1 1 0}<1 -1 2>	12.95	0.408	0.052
{2 3 1}<-3 4 -6> 5 82	{1 3 2}<6 -4 3>	7.28	0.466	0.033
{2 1 3}<-3 -6 4> 18.09	{2 3 1}<3 -4 6>	12.08	0.466	0.056
{1 3 9}<0 -3 1> 11.34	{2 3 1}<-3 4 -6>	5.82	0.466	0.027
{0 1 3}<1 0 0> 8.69	{2 1 3}<-3 -6 4>	18.09	0.466	0.084
{1 2 3}<4 1 -2> 4.31	{1 3 9}<0 -3 1>	11.34	0.493	0.055
{1 1 0}<0 0 1> 5.59	{0 1 3}<1 0 0>	8.69	0.489	0.042
()	{1 2 3}<4 1 -2>	4.31	0.466	0.02
	{1 1 0}<0 0 1>	5.59	0.408	0.022
	sum-volumefraction=	99.36%		
	Schmid function(S*Vf/10	0)=	0.46093	
				~
	<			>
Schmidcalc Symmetry SchmidCalc	SchmidFDisp			

入力データのrandom方位なしからVF%が計算し、ほぼ定量されている。

7. Sample (アルミニウムO材)

8. Sample (O材) データ処理

ODEDalaEinere 2 00701/13/211 br/CTP
📶 Our role iguize 35 r [2/1 [2/2]] go Cin 👘 — 👘 — 🔤 👘 — 👘 — 👘 — 👘 — 👘 —
ASC(RINT-PC) V B 111 ASC 200 ASC 220 ASC
Calcration Condition
Previous Next C*CTR#DATA#Aluminum-H-O¥Aluminum-O¥111ASC 1,1,1 Change
Backgroud delete mode Smoothing
🗹 🖲 DoubleMode 🔿 SingleMode 🔿 LiveMode 🔿 HighMode 🔿 Nothing 🛛 BG defocus DSH12mm+Schulz+RSH5mm 🚽 🗍 Minimum mo_
Ο Minimum(α β) O MinimumAverage(α)X 0.5 Trans blinds angle 30.0
Peak slit 7.0 mm BG Slit 7.0 mm PeakSlit / BGS_ BG Scope 80.0 deg. 90.0 deg. Set Disp @Inhibit
AbsCalc
Ref Trans Schulz reflection method V Change Absorption coefficien 133.0 1/cm Thickness 0.2 cm V Set 2Theta 38.59 deg. (a) 1/kt Profile
Defocus file Select Trasmission defocus HKL+T
Defocus(1) functions file CVCTRWDATA¥Aluminum-H-O¥Al random¥defocus¥DEFOCUS F TXT
Make detocus function files by 1X12 riles informatication all agree of a polynomial U lenckhoffritting includes
O Defocus(3) function files folder(Calc unbackdefocus) BB185mm v Limit Alfa Defocus value Free(LimitValue=0.0) v
O Defocus(2) function files folder(Calc backdefocus) DSH12mm+Schulz+RSH5mm ∨ Search minimum EqualAngleRpX(Cubic only)
Smoothing for ADC
Center Data OutFiles Outcer Oat Oat Oat
CIR Connect O Asc O Mas O IXI O IXI Exit&ODF ODF
ValueODFVF-B ValueODFVF-A
Filemake success !! CTRHome : C: Select crystal : Cubic 21/07/24

最適化Rp%結果

Material Aluminum.txt			Initialize Start
Structure Code(Symmetries after Schoenfiles)	ic) v	● getHKL<-Filename	
a 1.0 <=b 1.0 <=c 1.0 alpha	90.0 beta 9	0.0 gamm 90.0	AllFileSelect
F Holder C¥CTR¥DATA¥Aluminum-H-O¥Aluminum-O			
F Data SelectFile(TXT(b,intens),TXT2(a,b,intens)) h,k,l	2Theta Alpha scope	AlphaS AlphaE Select
111_chB00D1CAS_2.TXT	1,1,1	38.59 0.0->75.0	0.0 75.0
200_chB00D1CAS_2.TXT	2,0,0	44.85 0.0->75.0	0.0 75.0
220_chB00D1CAS_2.TXT	2,2,0	65.22 0.0->75.0	0.0 75.0
	2,1,0	0.0	0.0 0.0
	2,1,1	0.0	0.0 0.0
	3,1,1	0.0	0.0 0.0
	4,0,0	0.0	0.0 0.0
	3,3,1	0.0	0.0 0.0
2	4,2,2	0.0	0.0 0.0
F	5,1,1	0.0	0.0 0.0
F	5,2,1	0.0	0.0 0.0
2	5,3,1	0.0	0.0 0.0
Comment 111_chB00D1CAS_2.TXT 200_chB00D10	CAS_2.TXT 220_chB00	D1CAS_2.TXT	
CenterData	-	Labotex(E	PF),popLA(RAW) filename

入力極点図

ODF 解析後の極点図

10.1入力極点図とODF解析後の極点図からRp%計算

ODFPoleFigure2で予測したRp%=3.1と同様な結果が得られています。

r a n d o m レベルは、0.2%でほぼ0.0%が得られています。

10. 2VolumeFraction評価

10.3 {114} <-1-72>を追加してVolumeFraction計算

Quantitative Analysis - Model Functions Method - Project: Al Sample:AI-30 Job:1										
Crystal Sy O	ymmetry (Cubic)	-Sample Syn	nmetry orhombic	G	rid Cells for 0	Output ODF	0	~	Step Diagram Range +/-	0.50
100.0% Misfit Good Backgr. Diff.	Component No	I	100.0%	Compo	nent No 1.		100.0%		Component No 1.	P
-45	i.0	45.	0 -45.	0		45	.0	-45.0	I	45.0
No	Texture Component	(Dn Distributi	on <mark>FWHM 124</mark>	г₩нмФ	FWHM 🌮	Volume Fraction		Show Sym. Eq.	
1 { 0	0 1 }< 1 0 0 > cube	-	Gauss	- 9.6	18.5	11.4	21	%	{001}<100> cut	e 🔻
2 { 0	13}<100>	- F	Gauss	- 13.3	14.9	14.8	10	%	Calculation Mode	
3 { 1	1 4}<-1 -7 2>	<u> </u>	Gauss	- 20.6	24.9	19.8	16	%	Automatic	Manual
4 { 3	0 1 }< -1 0 3 >	<u> </u>	Gauss	→ 12.9	30.9	21.5	5	%		
5 { 1	1 0 }< 0 0 1 > goss		Gauss	- 38.4	21.6	14.4	9	%	Max. Iteration Number :	1,000 📫
6 { 2	2 3 1 }< 3 -4 6 > S-2	<u> </u>	Gauss	- 25.2	17.6	23.8	4	%	Max. Fit Error % (*1000) : 🔽	100 ÷
7 { 2	! 3 1 }< −3 4 −6 > S−4	<u> </u>	Gauss	- 23.1	15.2	21.4	5	%	Iteration :	223
8 { 2	! 1 3}< -3 -6 4> S-3	<u> </u>	Gauss	- 35.2	18.0	20.7	15	%		47110
9 { 1	3 2 }< 6 -4 3 > S-1	<u> </u>	Gauss	- 20.7	22.2	17.9	2	%	Fit Error% (*1000) :	47110.
10 { 1	39}<0-31>		Gauss	- 22.8	27.2	28.0	7	%	Fit Calculation Pr	ogress
✓ Max. Linearity	Image: Wax. Drientation Set Set from Database (sort by									
Change In	itial Parameters Fix Angl	es Fix Frac	ctions	Start Volur	ne Fraction I	Calculation		View I	Report Exit and Show	Exit

10. 4入力極点図から計算した ODF 図の極点図とVF%の極点図比較

基準内に収まりました。

11. DataBaseに1方位追加したVolumeFractionからシュミット因子計算

FCCSchmidFactorCalc 1.11T[21/12/31] by CTR File Liele			_	
		_		
LaboTex VolumeFraction(100%VFMode)				
C:¥LaboTex2¥USER¥AILAB¥O-Cubic.LAB¥AILAB¥	AI-30.LAB¥Job03¥AI-30.POD			Disp
Data input				
h k l}or lh k l]	v w>	i1 PHI phi2	000	
ND Input	Input		5 ~	Input
{0 0 1}<1 0 0> 20.89	Calc result	Vf(%)	Sch	S*Vf/ "
{0 1 3}<1 0 0> 10.02	0		0.400	0.007
{1 1 4}<-1 -7 2> 16.03	{0 0 1}<1 0 0>	20.89	0.408	0.085
{3 0 1}<-1 0 3> 5.02	{0 1 3}<1 0 0>	10.02	0.469	0.045
{1 1 0}<0 0 1> 9.02	$\{1 4\} < -1 - 7 \ge -1$	5.03	0.432	0.005
$\{2 \ 3 \ 1\} < 3 - 4 \ 6 > 4.04$	1 1 01<0 0 1>	9.02	0.409	0.024
$\{2,3,1\}<-3,4,-6>,5,04$	{2 3 1}<3 -4 6>	4 04	0.466	0.018
{2 3}<-3 -6 42 13.02 (1 3 2)<6 4 3> 2.05	{2 3 1}<-3 4 -6>	5.04	0.466	0.023
1 3 0 2 0 - 3 1 5 7 2	{2 1 3}<-3 -6 4>	15.02	0.466	0.07
1 0 9,0 0 12 1.2	{1 3 2}<6 -4 3>	2.05	0.466	0.009
	{1 3 9}<0 -3 1>	7.2	0.493	0.035
	sum-volumefraction=	94.33%		
	Schmid function(S*Vf	/100)=	0.42273	
				· · · · · · · · · · · · · · · · · · ·
	<			>
Schmidcalc Symmetry SchmidCal	c SchmidFDisp			

# FCCSchmidFactorCalc 1.11T[21/12/31] by CTR			-	
File Help	ctorCalc 1.11T[21/12/31] by CTR - - × MumeFraction(SumVFmode)			
_ InputFile(TXT)				
LaboTex VolumeFraction(SumVFmode)				Dia
0.#Lab016x2#03ER#HILRD#0=00016LRD#HILRD#HI-30.LRD#J0003#HI-30.F0D				Disp
Data input Data input Th k I} or D k I] D ND L D ND	Input	hi1 PHI phi2	Roop	Input
{0 0 1}<1 0 0> 20 89	Calc result	Vf(%)	Sch	S*Vf/:
{0 1 3}<1 0 0> 10 02	mVF			
{1 1 4}<-1 -7 2> 16.03	{0 0 1}<1 0 0>	20.89	0.408	0.09
{3 0 1}<-1 0 3> 5 02	{0 1 3}<1 0 0>	10.02	0.489	0.052
{1 1 0}<0 0 1> 9.02	{1 1 4}<-1 -7 2>	16.03	0.432	0.073
{2 3 1}<3 -4 6> 4.04	{3 0 1}<-1 0 3>	5.02	0.489	0.026
{2 3 1}<-3 4 -6> 5.04	{1 1 0}<0 0 1>	9.02	0.408	0.039
{2 1 3}<-3 -6 4> 15.02	{2 3 1}<3 -4 6>	4.04	0.466	0.019
{1 3 2}<6 -4 3> 2.05	{2 3 1}<-3 4 -6>	5.04	0.466	0.024
{1 3 9}<0 -3 1> 7.2	{2 1 3}<-3 -6 4>	15.02	0.466	0.074
	{1 3 2}<6 -4 3>	2.05	0.466	0.01
	{1 3 9}<0 -3 1>	7.2	0.493	0.037
	sum-volumefraction=	94.33%		
	Schmid function(SS*V	/f/sumVf)=	0.44814	
<u> </u>	<			>
Schmidcalc Symmetry SchmidCalc	SchmidFDisp			