mtex5.3.1のEBSDデータをLaboTexに読み込む

- 1. 概要
 - 1. 1metex5. 3. 1付属データ
- 2. ferriteデータの読み込み
 - 2.1 EBSDtoLaboTexソフトウエアで読み込む
 - 2.2 LaboTexで読み込み
 - 3 極点図のβ回転
 - 2.4 Triclinic->Orthorombic
 - 2. 5 VolumeFraction計算
 - 2. 6 VolumeFraction結果のError評価
- 3. Titaniumデータの読み込み
 - 3.1 LaboTexに読み込み
 - 3. 2 ODF図の平滑化
 - 3. 3 平滑化データをLaboTexに表示

1. 概要

CTRソフトウエアでは、EBSDで測定したEuler角度データを読み込み、LaboTexの SORデータに変換し、LaboTexにODFデータとして読み込ませる機能があります。 更に、EBSDデータは測定出来る結晶数が少ないため、ODF図が粗く、ODF図の平滑化の 機能があります。

EBSDデータを用いて説明します。

1. 1 mtex5. 3. 1付属データ

mtex-5.3.1 > data	i > EBSD
-------------------	----------

	名前	~ 更新日時	種類	サイズ	
	JdData	2020/07/09 16:09	ファイル フォルダー		
	📄 copper.osc	2020/07/09 16:09	OSC ファイル	6,306 KB	
	CSL.txt	2020/07/09 16:09	テキスト文書	6,871 KB	
	DRex.txt	2020/07/09 16:09	テキスト文書	107 KB	
	🔢 expmmap.zip	2020/07/09 16:09	圧縮 (zip 形式) フォ	14 KB	
	Forsterite.ctf	2020/07/09 16:09	CTF ファイル	13,600 KB	
	📳 polycrystalline_aluminum.txt	2020/07/09 16:09	テキスト文書	433 KB	
	📳 sharp.txt	2020/07/09 16:09	テキスト文書	945 KB	
	testdata_generator.py	2020/07/09 16:09	PY ファイル	3 KB	
	testdata_hex.ctf	2020/07/09 16:09	CTF ファイル	45 KB	
	testdata_sqr.ctf	2020/07/09 16:09	CTF ファイル	45 KB	
	📳 titanium.txt	2020/07/09 16:09	テキスト文書	855 KB	
	📳 85_829grad_07_09_06.txt	2020/07/09 16:09	テキスト文書	3,828 KB	
	🐕 ACOM.ang	2020/07/09 16:09	ANG ファイル	17 KB	
	data.ctf	2020/07/09 16:09	CTF ファイル	2,702 KB	
	🐕 DC06_2uniax.ang	2020/07/09 16:09	ANG ファイル	805 KB	
ļ	eclogite.ctf	2020/07/09 16:09	CTF ファイル	35 KB	_
	🐕 ferrite.ang	2020/07/09 16:09	ANG ファイル	5,485 KB	
	🚮 olivineopticalmap.ang	2020/07/09 16:09	ANG ファイル	6,361 KB	
	P5629U1.txt	2020/07/09 16:09	テキスト文書	708 KB	
	🛍 single_grain_aluminum.txt	2020/07/09 16:09	テキスト文書	1,614 KB	
	twins.ctf	2020/07/09 16:09	CTF ファイル	1,287 KB	

など

- 2. ferriteデータの読み込み
- 2. 1 EBSDtoLaboTexソフトウエアで読み込む

EBSDtoLaboTex 2.11ST[20/10/31] by CTR		
не нер		đ
Material		
e Material A-Iron.txt		
Lattice constant		
Structure Code(symmetries after Schoenfiles) 7 - 0 (cubic)	~	
a 1.0 b 1.0 c 1.0 alfa 90.0 beta 90.0 gar	mm 90.0	
Step for output O] _Weight for data Angle Unit Angle Con	vention —	1
5.0 V 1-present V 0-deg V 0-Bun	ge 🗸	
Input data format		
Check data Line 60 Select file A Select ID 1		it
No of data Line		
Quit data Line 6 P1 11 F 13 P2	12	1h
		11
40		
		H
-S Comment		/
+		10
LaboTex File(SOR) TexTools File(OIM A		
	0-11	_

🖌 🖉 EBSD	toLaboTex 2.11ST[20/10/31] by CTR	– 🗆 X
File He	p	
Mate	rial	
	Material A-Iron.txt	
Latti	e constant	
s	ructure Code(symmetries after Schoenfiles) 7 - O (cubic)	~
a	1.0 b 1.0 c 1.0 alfa 90.0 beta 90	1.0 gamm 90.0
Step 5.0	for output O Weight for data Angle Unit	Angle Convention 0-Bunge V
Inpu	data format	·]
	Check data Line 135 Select file 8 Select ID 0	
l l r'	lo of data Line	
	Out data Line 134 P1 1 F 2	P2 3
	130: # SAMPZEID:	
	131: # 132: # SCANID:	
	133 #	
	134: 1.08737 1.16207 4.75849 0.00	000 0.00000 3
<		>
Com	nent	
C:¥	ntex-5.3.1¥data¥EBSD¥ferrite.ang	
	aboTex File(SOR) TexTools File(OIM A	
Laból	EX FIIE(SURV TEXTOOIS FIIE(UIM A	
C:\mtex-	5.3.1\data\EBSD\ferrite.SOR make Complete !!!	
乍成された	SORファイル	
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
ang /	2020/07/09 16:09 ANG 7	ァイル 5.485.KR
a.SOR	2020/07/15 13:57 SOR 77	パル 5,433 KB パル 1.213 KB

2. 2 LaboTexで読み込み

New Sample	×
Choose Experimental Data (LaboTex Single Orientations Files) C EPF C PPF C SOB C NJC C NJA C RW1 C epf Selected : 1 femile SOB	Crystal Symmetry O (Cubic)
	Project Name
Path C:\mtex-5.3.1\data\EBSD\ ferrite.SOR	
Info C:\mtex-5.3.1\data\EBSD\ferrite.ang	Project Name : Demo
Choose Defocussing Correction	Sample Name
Correction (On/Off) Correction Data from File Correction Data from File	EBSD EBSD(ang)
(COR, POW, DFB, ASC, PFG, NJA, DAT, POL, NJC, COA, RWA, UXD, EXP)	EBSD-ang ferrite
Cor(1x1).cor Cor(5x5).cor	O_Cubic
	O_Cubic_arb
	0_Cubic_c2 0_Cubic_d2
Path C:\LaboTex2\USER\EBSD.LAB\COR\	s_orient
Info	Sample Name : [ferrite2]
Cancel Create of ODF from Si	ngle Orientations Data

100.0 % ODF Creations from Single	Orientations X
Project	Sample
Demo	ferrite2
Crystal Symmetry	Cell Parameters (Relative)
O-Cubic 💌	a 1.0 b 1.0 c 1.0
Angle Convention for Data	
Bunge 🖵	α <u>90.</u> C β <u>90.</u> C γ <u>90.</u> C
Grid Cells for Output ODF	e Unit Weight Phase
Descriptions	
C:\mtex-5.3.1\data\EBSD\ferrite.ar	ng
Single Orientations Files	Calculations Progress
ferrite.SOR	Merge (files) 1/1
	No of single orien. 63045.
	Calculation Finished
- 'SOR' Output File Options	
Add (HKL) <uvw> 🔲 🛛 Max. V</uvw>	/alue of Miller Indice = 15 📫
Hexagonal Axis Convention of Data	(important only in Hexagonal C.S.)
• <u></u>	° <u>⊈</u>
Warning: If your file contains non-index	ed data, then you should use "EBSD Format
- Defined by User'' (Menu "Ec	lit", "LaboTex Options", "Data Formats")
In this format you can exclude	e non-indexed data from ODF calculation.
Non-indexed data can create	a false maximum on the ODF!
in case of problems, please c	orrace the once@iabosoft.com.pr
BREAK	END

3 極点図のβ回転

ODF Transformation (Rotation)	×
Project Demo	Sampleferrite2
Crystal Symmetry <mark>O</mark> (Cubic)	Sample Symmetry
 Sample Frame Rotation 	C Crystallites/Planes Rotations Build Rotations Model
Euler Angles P1 P2 (-360 - 360) (-180 - 180) (-360 - 360) 5 0 0 0 - 0 -	Choose Rotation Model
O Draft O Medium ☐ Reversed Spin ☑ Triclinic	Quality G High Quality s.s. (Output ODF)
Transformation Progress	Cancel 0.00 %

2.4 Triclinic->Orthorombic

2. 5 VolumeFraction計算

Cube100%が計算されます

EBSDから計算したODF図

VolumeFraction から計算したODF図

2. 6 VolumeFraction結果のError評価

Error評価はOrthorombicの極点図とVFの極点図からRp%を計算

File Help Resolusion:5.0 EqualAngle TextDisplay FolderDisp Polefiguredisp A-tron ICD Recalculated Polefigure 10 200 211 CV/mitex-5.3.WdataVEBSDWFerrite2-Ortho-VF.TFF VolumeFraction Polefigure 10 200 211 CV/mitex-5.3.WdataVEBSDWFerrite2-Ortho-VF.TFF RpK 0.5 0.1 0.4 CV/mitex-53.WdataVEBSDWFerrite2-Ortho-VF.TFF Average: 0.5 0.1 0.4 CV/mitex-53.WdataVEBSDWFerrite2-Ortho-VF.TFF No 0.5 0.1 0.4 CV/mitex-53.WdataVEBSDWFerrite2-Ortho-VF.TFF <	ValueODFVF 2.3	5T[20/10/31]	by CTR							_		×
Recalculated Poletigure 110 200 211 C+mtex-5.3.1HdataVEBSDVferrite2-Ortho-VF.TPF RgK 0.5 0.1 0.4 C+mtex-5.3.1HdataVEBSDVferrite2-Ortho-VF.TPF Average 0.3 0.1 0.4 C+mtex-5.3.1HdataVEBSDVferrite2-Ortho-VF.TPF Average 0.5 0.1 0.4 C+mtex-5.3.1HdataVEBSDVferrite2-Ortho-VF.TPF Average 0.3 0 20007/18 Average 0.3 M 1.6 .	File Help Resol	usion:5.0	Equal	Angle	TextDisplay	y Folde	rDisp	Polefi	guredis	p A-Iron ICDD		
VolumeFraction Poletique 110 200 211 remite2-Ortho_TPF / ferrite2-Ortho_VF.TPF RpK 0.5 0.1 0.4 Average= 0.3 % 30 % 20007/18 1 1 1 1.5 20007/18 1.5 1.6 1.6 </td <td>Recalculated Polefig</td> <td>ure 110</td> <td>200</td> <td>211</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>C:¥mtex-5.3.1¥data¥EBSD¥ferrite2-Ortho-V</td> <td>F.TPF</td> <td></td>	Recalculated Polefig	ure 110	200	211						C:¥mtex-5.3.1¥data¥EBSD¥ferrite2-Ortho-V	F.TPF	
Rpx 0.5 0.1 0.4 Average= 0.3 % 3.0 % 20/07/18 1 1.5	VolumeFraction Pole	figure 110	200	211						ferrite2-Ortho.TPF / ferrite2-Ortho-VF.TPF		
30 % 2007/18 1.5 -1.5 -30 0 Alpha(deg.) 90	Rp%	0.5	0.1	0.4						Average= 0.3 %		
1.5 0.0 1.6 1.6 .30 0 Alpha(deg.) 90	3.0_%									:	20/07/1	8
1.5 0.0 -1.5 -3.0 0 Alpha(deg.) 90												
1.5 0.0 -1.5 -3.0 0 Alpha(deg.) 90												
1.5 0.0 -1.5 -3.0 0 Alpha(deg.) 90												
1.5 0.0 -1.6 -3.0 0 Alpha(deg.) 90												
1.5 0.0 -1.6 -3.0 0 Alpha(deg.) 90												
0.0 -1.6 -3.0 0 Alpha(deg) 90	1.5											4
0.0 -1.5 -3.0 0 Alpha(deg.) 90												
-1.5 -3.0 0 Alpha(deg.) 90												
0.0 -1.5 -3.0 0 Alpha(deg.) 90												
-1.5 -3.0 0 Alpha(deg.) 90												
-1.5 -3.0 0 Alpha(deg.) 90	0.0											
-1.5 	0.0				\sim			-	\gg	~ ~ ~		1
-1.5 												
-1.5 												
-1.5 -3.0 0 Alpha(deg.) 90												
-1.5 												
-3.0 0 Alpha(deg.) 90	-1.5											4
-3.0												
-3.0												
-3.0												
-3.0 Alpha(deg.) 90												
0 Alpha(deg.) 90	2.0											
	0						Alph	a(deg.)			!	90

一致しています。

VolumeFraction 結果の backgroud がゼロのため、一致度は100%である。

VolumeFraction 結果のバックグランドには、ランダムと VF で計算されない方位が含まれます。

3. titaniumの読み込み

ile	e Help	
	Material Titanium.txt	
	Lattice constant	
	Structure Code(symmetries after Schoenfiles) 11 - D6 (hexagonal) ~	
	a 1.0 b 1.0 c 1.5871 alfa 90.0 beta 90.0 gamm 120.0	
-	Step for output O Weight for data Angle Unit Angle Convention 5.0 I-present Io-deg Io-Bunge	
	_Input data format	_
	Check data Line 60 Select file 4 Select ID 0	
	No of data Line	
	Out data Line 1 P1 1 E 2 P2 3	
	0: phil Phi phi2 phase ci	^
	1 🚩 227 3.99925 343.998 🚺 0 0.391 31	
	2: 298.932 155.674 301.718 0 0.7 31	
	3: 298.03 155.571 301.047 0 0.614 31	
	4: 298.509 155.642 301.608 0 0.823 33	
	5: 298.956 155.845 302.095 U U.527 29.	V
L	< >>	_
Γ	Comment	1
	C:¥mtex-5.3.1¥data¥EBSD¥titanium.txt	
]
	Labollex File(SOR) TexTools File(OIM A	

LaboTex File(SOR)

TexTools File(OIM A...

C:\mtex-5.3.1\data\EBSD\titanium.SOR make Complete !!!

	З.	1	Lа	b	0	Т	е	х	に読み込み	H
--	----	---	----	---	---	---	---	---	-------	---

New Sample	X
Choose Experimental Data (LaboTex Single Orientations Files) C EPF C PPF ● SOR C NJC C NJA C RW1 C epf Selected : 1	Crystal Symmetry D ₆ (Hexagonal)
ferrite.SDR titanium.SOR	Project Name
Path C:\mtex-5.3.1\data\EBSD\ titanium.SOR	
Info C:\mtex-5.3.1\data\EBSD\titanium.txt	Project Name : Demo
Choose Defocussing Correction	Sample Name
Correction (On/Off) Correction Data from File Correction Data from File COR.POW,DFB_ASC.PFG,NJA,DAT,POL,NJC,COA,RWA,UXD,EXP) Cor(1x1).cor Cor(5x5).cor	D6_Hexagonal Fe-23Ni-2
Path C:\LaboTex2\USER\EBSD.LAB\COR\	Cauch Names - Review
	Sample Name : titanium
Cancel Create of ODF from Si	ingle Orientations Data

Project	Sample	1
Demo	titanium	
0.10.1		1
Crystal Symmetry	Cell Parameters (Relative)	1
D6-Hexagonal 👻	a 1.0 b 1.0 c 1.5	
Angle Convention for Data		
Bunge 💌	α 90.C β 90.C γ 120.1	
Grid Cells for Output ODF	ngle Unit Weight Phase	
5.0*5.0 – D	egrees 🔻 Yes 💌 0 💌	
Descriptions		
titanium.SOR	Merge (files) No of single orien.	
		_
'SOR' Output File Options		
Add {HKL} <uvw> 🔲 Ma</uvw>	x. Value of Miller Indice = 15 📑	
Hexagonal Axis Convention of D	ata (important only in Hexagonal C.S.)	
۰ 🗳	• <u>\$</u>	
arning: If your file contains non-ind	lexed data, then you should use "EBSD Format	
- Defined by User'' (Menu '	'Edit'', ''LaboTex Options'', ''Data Formats'')	
In this format you can evel	ude non-indexed data from ODF calculation.	
in and format you can excit	ate false maximum on the ODF!	
Non-indexed data can cre		
Non-indexed data can cre- In case of problems, pleas	e contact the office@labosoft.com.pl	
Non-indexed data can cre In case of problems, pleas BUIN	e contact the office@labosoft.com.pl	

	le Orientations
- Project	Sample
Demo	titanium
Crystal Symmetry	Cell Parameters (Relative)
D6-Hexagonal 💌	a 1.0 b 1.0 c 1.5
Angle Convention for Data	
Bunge 🚽	α 90.C β 90.C γ 120.
Grid Cells for Output ODF	egrees Yes Phase
Descriptions	
C:\mtex-5.3.1\data\EBSD\titanit	um.txt
Manium SOR	Merge (files) 1/1 No of single orien. 8098.
	Calculation Finished
'SOR' Output File Options	
Add {HKL} <uvw> 🔲 🛛 Max</uvw>	x. Value of Miller Indice = 15 🛨
Hexagonal Axis Convention of D	ata (important only in Hexagonal C.S.)
	• 🚯
· 🕒	
Varning: If your file contains non-ind	exed data, then you should use "EBSD Forr
'arning: If your file contains non-ind - Defined by User'' (Menu '	lexed data, then you should use "EBSD For "Edit", "LaboTex Options", "Data Formats")
'arning: If your file contains non-ind - Defined by User'' (Menu ' In this format you can excl	lexed data, then you should use "EBSD For "Edit", "LaboTex Options", "Data Formats") ude non-indexed data from ODF calculation.
'arning: If your file contains non-ind - Defined by User'' (Menu ' In this format you can excl Non-indexed data can cre	lexed data, then you should use "EBSD For "Edit", "LaboTex Options", "Data Formats") ude non-indexed data from ODF calculation. ate false maximum on the ODF!
'arning: If your file contains non-ind - Defined by User'' (Menu ' In this format you can excl Non-indexed data can cre- In case of problems, please	lexed data, then you should use "EBSD For "Edit", "LaboTex Options", "Data Formats") ude non-indexed data from ODF calculation. ate false maximum on the ODF! e contact the office@labosoft.com.pl
arning: If your file contains non-ind - Defined by User'' (Menu ' In this format you can excl Non-indexed data can cre- In case of problems, pleas BREAK	exed data, then you should use "EBSD Forr "Edit", "LaboTex Options", "Data Formats") ude non-indexed data from ODF calculation. ate false maximum on the ODF! e contact the office@labosoft.com.pl END

読み込まれたODF図

File Edit View Calculation Analysis Modelling Help 🚳 + D 🖆 🗩 🌠 😹 🖨 🔋 🗏 🎛 🎛 🖽 🕄 🔛 💷 😾 V J 👗 😏 🍋 A R 🛞 i ⊿ 2D 3D 😂 🗮 CPF NPF RPF APF INV ODF 991 992 Φ • @ 0000 o 0 00 0 °<S () 0 \bigcirc ۹ o 🍋 Levels 1195.4 1195.4 1115.7 1036.0 956.3 876.6 796.9 717.2 557.9 478.2 398.5 318.8 239.1 159.4 1.0 0 ٥ ٩ 0 0 0 0 6 °°°° 00 ° \circ ૼૼ૾ૺૺ૱ \diamond چ ہ ° • ۲ . 0 0 ٥ ٩ ი ე 0 0 0 ۲ 0° C • 8 \circ <> <) 0 0 0 0 \diamond ° 0 6 ۲ 0 0 Max=1275.110 Min=0.000 2020/07/18 0 ۰Ĝ 0.° 0 °°0° 0 \diamond \bigcirc_{\Diamond} . . . 0 8 ۲ 0 °0, 0 0 ° 0 0 0 •0 0 0 360 • ¢ 1 • 0 0 N [⊗] 0 $^{\phi}_{\Delta}$ = 0-60 Δ = 5.00 0 90 0 D6-Hexagonal 🔹 Demo ▼ titanium - //

3. 2 ODF図の平滑化

EBSDでは、測定範囲が狭いため、粒径が大きいとODF図は粗くなります。 LaboTexではODF図の平滑化はサポートしていないため、外部で平滑化し読み込む 詳しくは、LaboTexODFFileソフトウエア説明書を参考にしてください。 以下に手順を説明します。

LaboTexODFFile 1.04ST[20/10/31] by	開<			×
File Help	ファイルの場所(1):	Job01	🗸 🤌 📂 🛄 -	
DDFFile C:\LaboTex	● 最近使った項…	LaboTex2 USER BSDLAB D6-HexagonalLAB	^	
ODF & EBSD ODF file	デスクトップ	Litanium⊥AB Job01 Litanium⊥AB Litanium⊥AB Litanium⊥AB Litanium⊥AB Litanium⊥AB Litanium⊥AB Litanium⊥AB	Ŷ	
ReCalc PoleFigure File	<u>اللہ میں المیں المی</u>			
Export PoleFigure file TXT2 PoleFigure-3D-Display InverseData	PC	ファイル名(N):		開く
ODFInverseData	ネットワーク	ファイルのタイプ(T): *.ODF,*OPL	~	取消
77	ッイルの場所(I): [Job01		
	<u></u>	titanium.ODF		

LaboTexで作成されたJob1のtitanium.ODFを読み込む

平滑化を行う

平滑化された ODF 図

平滑化データ s a v e

GPODFDisplay(V2) 2.06T[20/10/31] by CTR				-		×	
File Titanium Atype View SM=9(8) Search 7.0,7,false Help	Fiber	ODF	DataBase	Resolut	tion		
LaboTex ODF Export (PHI1 PHI2 PHI ODF)(Hexa:AorB)	>						白馬岳.docx
TexTools ODF Export (Hexa:A-Type)	>						
StandardODF (ODF15,ODF15.bin)							200
NewODF(f1 F f2 Value)	>						
popLA (Hexa: AType)	>						
DhmsBunge (*.EOD)							
MTEX(f1 F f2 Value)							
MTEX(Triclinic(1/4cut) to Orthorhombic)	>						54_20200
MTEX(Triclinic to Orthorhombic(Average))							
EBSD-OIM(f1 F f2 Value)							
EBSD-OIM(Triclinic to Orthorhombic)							- 💏
Vector	>						劳丸
ATEX(Triclinic)	>						
ATEX(Triclinicv(1/4) to Orthorhombic)	>						
Save	2	LaboT	exFomat(φ	1,φ2,Φ,Ο	DDF) lo	op(φ1->	•φ2->Φ)
TmpfileDisp		Standa	ardODFFor	mat(φ2,¢	Ϸ,φ1,ΟΙ	DF) loop	ο(φ1->Φ->φ2)
to Version1		EBSD-	-OIMFormat	(φ1,Φ,φ	2) looj	p(φ2->Φ	D->φ1)
Exit		MTEX	Fomat(φ1,¢	Φ,φ2) Ιος	op(φ1 ->	»Φ ->φ2	2)

選択で、LabotexODFFileに平滑化されたODFファイルが表示

LaboTexODFFile 1.04ST[20/10/31] by CTR	_		\times
File Help			
FInput Job file (LaboTex)			
ODFFile C:\LaboTex2\USER\EBSD.LAB\D6-Hexagonal.LAB\Demo.LAB\titanium.LAB\Job01\titanium.ODF			
Smooting file			
Smoothing success!!	job C	DDF Ma	ke
ODF & EBSD ODF file			
EBSD,ODF file			
r ReCale PoleFigure File			

j o b ファイルを作成

LaboTexODFFile 1.04ST[20/10/31] by CTR	_		\times
File Help			
FInput Job file (LaboTex)			
ODFFile C:\LaboTex2\USER\EBSD.LAB\D6-Hexagonal.LAB\Demo.LAB\titanium.LAB\Job01\titanium.ODF			
Smooting file			
Smoothing success!!	job C	DF Mal	ke
ODF & EBSD ODF file			
EBSD,ODF file			
C:\LaboTex2\USER\EBSD.LAB\D6-Hexagonal.LAB\Demo.LAB\titanium.LAB\Job02\titanium.ODF make success !!			

LaboTex管理化のjob2が新たに作成される

3. 3 平滑化データをLaboTexに表示

job1と平滑化されたjob2を表示

_							
) _{\$}	00	• • •	> ° 0 °	° ° °	٢	titanium Levels 1195.4
		¢		~		0	1036.0
	` م 000 ه	°~	0	°°°°	°°°	è	956.3 876.6 796.9
	0				0		557.9
	ଁ 🔊 🗞	0 0		0 > •	0 °	٠	478.2 398.5 318.8 239.1
	ଂ	° ° °	•) @() 0	0 0	0 '0	1.0 Max=1275.1 Min=0.000 2020/07/18
	° 8	000	0 0 0	0°°	•	ං ං උ	
	°,		0	°°°°	°	8	0 360 • • 1
)	00 0	• • (¢0-60 Δ=5.00
		<u>ہ</u>					▼ Φ

