popLAソフトウエアをサポートするソフトウエア

極点図をLaboTexのシュミレーション機能で作成し、
極点図 {111}, {200}, {220} 極点図をExportし、
PFtoODF2popLAソフトウエアで極点図を0->75度の制限を付けて
popLA用 RAW, DFBファイルを作成し、
popLAのWIMV法でODF解析し、
Bunge phi1断面を表示して
元のLaboTexと同じ結晶方位図が確認出来る。

cube, goss, copper 20%

: 0: 19

phi2断面

💼 111_cgc20%.TPF	3 KB	TPF ファイル	2009/12/09 20:44
🔂 200_cgc20%TPF	3 KB	TPF ファイル	2009/12/09 20:44
🖻 220_cgc20%TPF	3 KB	TPF ファイル	2009/12/09 20:44
DDF_cgc20%	275 KB	켜자文書	2009/12/09 20:44

ODFDisplayソフトウエアで確認する。

🕌 ODFDisplay 1.100FS by CTR	. 💶 🗖 🔀
File Help	
ODFTXTFile	
Bunge Roe Phi1 Phi2 Phi1	
Display	

File ->FileSelect ->LaboTex で ODF_cgc20%.txt を選択

Phi1 断面

が確認出来る。

極点図 {111}, {200}, {220} をpopLAで処理を行い、ODF図を表示させる。 そのために TPF ファイルからTXT2に変換する。

MakePoleFileソフトウエアでフォーマット変換を行う。

File Help	
_SelectFile	
Step Angles	
Out Filename]
OK	

File -> LaboTex(TPF)モードを使う。

📓 MakePoleFile 1.410FS by CTF
File Help
SelectFile F:\popLA\111_cgc20%.TPF Step Angles 5.0deg Out Filename Out Filename TXT O Asc F:\popLA\111_5.0deg-rp2.TXT OK
MakePoleFile 1.410FS by CTR File Help
SelectFile F:\popLA\111_cgc20%.TPF Step Angles 5.0deg Out Filename INTRO Asc F:\popLA\111_5.0deg-rp2.TXT OK File make Success !!

同じように他の極点図も変換する。

📷 111_cgc20%TPF	3 KB	TPF ファイル	2009/12/09 20:44
🔂 200_cgc20%.TPF	3 KB	TPF ファイル	2009/12/09 20:44
🔂 220_cgc20%.TPF	3 KB	TPF ファイル	2009/12/09 20:44
DDF_cgc20%	275 KB	テキスト文書	2009/12/09 20:44
📳 111_5.0deg-rp2	22 KB	テキスト文書	2009/12/09 20:55
📳 200_5.0deg-rp2	23 KB	テキスト文書	2009/12/09 20:55
🕮 220_5.0deg-rp2	23 KB	テキスト文書	2009/12/09 20:56

TXT2ファイルの確認は

GPPoleDisplayソフトウエアで確認出来る。

🕌 GPPoleDisplay 1.110FS by CTR	
File Help	
Home	
Disclose Tale	
Filename-	
0	
•	
Display	

🕌 GPPoleDisplay 1.110FS by CTR
File Help
Home
F:¥popLA
Display Title
г{НКL}
Display

同じように {200}、 {220} の表示を行う。

広角極点データは通常0->75度の測定

p o p L Aの入力データを作成する。

PFtoODF2popLAソフトウエアで極点図を0->75度としてpopLAファイルを作成する。

A PF to popLA by CTR PFtoODF2POLA 5.531FS by CTR			
File Option Symmetric Software Data			
Lattice constant			
Structure Code (Symmetries after Schoenfiles) 7 - 0 (cubic)			
a 1.0 <=b 1.0 <=c 1.0 alfa 90.0 beta 90.0 gamm 90.0		LC AutoCan	ge
PF Data			
SelectFile(TXT(b,intens),TXT2(a,b,intens.)) h,k,I 2Theta Alfa Area	Trans /	AlfaS AlfaE S	elect
I11_5.0deg-rp2.TXT 1.1.1 0.0 0.0->90.0		0.0 75	
200_5.0deg-rp2.TXT 2.0.0 0.0 0.0->90.0		0.0 75	
220_5.0deg-rp2.TXT 2.2.0 0.0 0.0->90.0		0.0 75	
2,1,0 0.0		0.0 0.0	
		0.0 0.0	
		0.0 0.0	
		0.0 0.0	
		0.0 0.0	
2,1,0 0.0		0.0 0.0	
2,1,1 0.0		0.0 0.0	
2.2.1 0.0		0.0 0.0	
Comment [111];[200];[220];			
Symmetric type Full popLA(BAW) text	RAW) filena	ame	
popla			
■ popla - ワードパッド			
ファイル(E) 編集(E) 表示(V) 挿入(D) 書式(Q) ヘルブ(H)			
p_{OP} [11], [200], [220] 111 5 0 75 0 5 0360 0 1 1 2 1 3 100 1			
40 40 40 40 40 40 40 40 40 40 40 40 40 4	40 40		
40 40 40 40 40 40 40 40 40 40 40 40 40 4	10 40		
40 40 40 40 40 40 40 40 40 40 40 40 40 4	40 40 40		
	41 41 14 49		
43 43 44 44 43 42 42 42 42 42 42 42 42 41 41 41 41 41 4	++ 43 11 41		
41 41 41 41 41 41 41 42 42 42 42 42 42 43 44 4	44 43		

が表示される。

📷 111_cgc20%.TPF	3 KB	TPF ファイル	2009/12/09 20:44
📷 200_cgc20%.TPF	3 KB	TPF ファイル	2009/12/09 20:44
📷 220_cgc20%.TPF	3 KB	TPF ファイル	2009/12/09 20:44
DDF_cgc20%	275 KB	テキスト文書	2009/12/09 20:44
🕮 111_5.0deg-rp2	22 KB	ᆉ자文書	2009/12/09 20:57
📳 200_5.0deg-rp2	23 KB	テキスト文書	2009/12/09 20:55
📳220_5.0deg-rp2	23 KB	テキスト文書	2009/12/09 20:56
📷 popla.DFB	1 KB	DFB ファイル	2009/12/09 21:05
🗟 popla	17 KB	生データ	2009/12/09 21:05

popLA向けRAWファイル、DFBファイルが作成される。

RAWデータの確認は popLADatatoTXT2 ソフトウエアで表示出来る。

🛓 popLADatatoTXT2 1.310FS by CTR
File Help
SelectFilename
F:¥popLA¥popIa.RAW
Comment line
popla {111};[200];[220]
HKL or phi-
{111} {200} {220}
Create filename
111_popIaRAW2.TXT 200_popIaRAW2.TXT 220_popIaRAW2.TXT
File create O Square

極点図の外側が欠けていることが確認出来る。

popLAはC:¥X にインストールされているので、作成したRAW, DFBファイルをc:¥X に コピーする。 d o s 画面を立ち上げ、c d c:¥x tmpdos を入力

Microsoft Windows [Version 6.1.7600] Copyright (c) 2009 Microsoft Corporation. All rights reserved. C:¥Users¥yamada>cd c:¥x c:¥X>tmpdos newpopla ファイル名(今回はpopla)で起動 To return to program, type EXIT (from SAME subdirectory) Microsoft(R) Windows DOS (C)Copyright Microsoft Corp 1990-2001. C:\X>newpopla popla newpoplaは煩いコメントを表示させないようにしたbatファイル poplaはRAWファイル名の指定 popLA: preferred orientation package - Los Alamos (Page 1) U.F. Kocks, J.S. Kallend, H.R. Wenk (May 1999) 0. QUIT 1. Get specimen DIRECTORY and VIEW a file 2. MASSAGE data files: correct,rotate,tilt,symmetrize,smooth,compare 3. WIMV: make spec.SOD; calculate PFs and inverse PFs; make matrices 4. HARMONIC analysis: COMPLETE rim (.FUL), get Roe Coeff.file (.HCF) CONVERSIONS, permutations, transformations, paring
 DISPLAYS and plots
 Derive PROPERTIES from .SOD or .HCF files, make WEIGHTS file for simul.
 DOS (temporary: type EXIT to return)

- Please type a number from 0 to $8 \rightarrow$

2. でEPFファイルを作成する。

MASSAGE DATA FILES (mostly PFs) (popLA page 2) 0. Quit 1. Return to Page 1 Return to Page 1 "Make THEORETICAL defocussing & background file: .DFB (R. Bolmaro)" DIGEST Raw Data (.RAW), with exper.or theor. .DFB: make .EPF ROTATE PFs or adjust for grid offsets: make .RPF or .JWC TILT PFs around right axis: make .TPF (T. Ozturk) [TO BE REPLACED] SYMMETRIZE PFs: make .QPF or .SPF or .FPF "EXPAND PFs back to full circle (needed for WIMV & harm.): .FPF" SMOOTH PFs or ODs with Gaussian Filter (quad, semi, or full): make .MPF Take DIFFERENCE between 2 files (PFs or ODs): make .DIF Please type a number from 0 to 9 ==> 9. 3. で作成

Enter name of raw data file (ext .RAW assumed) popla Enter name of correction file (ext .DFB assumed)popla

1. に戻る。

<pre>popLA: preferred orientation package - Los Alamos (Page 1) U.F. Kocks, J.S. Kallend, H.R. Wenk (May 1999) 0. QUIT 1. Get specimen DIRECTORY and VIEW a file 2. MASSAGE data files: correct,rotate,tilt,symmetrize,smooth,compare 3. WIMV: make spec.SOD; calculate PFs and inverse PFs; make matrices 4. HARMONIC analysis: COMPLETE rim (.FUL), get Roe Coeff.file (.HCF) 5. CONVERSIONS, permutations, transformations, paring 6. DISPLAYS and plots 7. Derive PROPERTIES from .SOD or .HCF files, make WEIGHTS file for 8. DOS (temporary: type EXIT to return) Please type a number from 0 to 8></pre>	simul.
2. WIMV法を選択	
WIMV Analysis (popLA page 0. Quit 1. Return to Page 1 WIMV: make .SOD and recalc. pole figures .WPF for: 2. cubic, tetra-,hexagonal crystals; sample diad: up to 3 PFs, 13 3. trigonal cry.,gen'l.sample sym., or higher: up to 7 PFs, 25 pol 4. orthorhombic crystals; gen'l.sample sym.: up to 7 PFs, 25 pol 7. orthorhombic crystals; gen'l.sample sym.: up to 7 PFs, 25 pol 8. using .WIM matrix for the desired PFs (up to 3, 13 poles) 6. using .BWM or .WM3 matrix for the desired PFs (up to 7, 25 pol 7. Calculate INVERSE pole figures from .SOD: .WIP (So far assumes tetragonal crystal symmetry) 8. Make WIMV pointer matrix for new crystal structure and set of 9. Make WIMV pointer matrix for any INVERSE pole figures: make .W Please type a number from 0 to 9>	3) poles es es Les) PFs IMI
2. cubic	
Enter the name of the wimv matrix (?.WIM) [Default is CUBIC] ==> Name of data file (default extension .epf): popla	
Sample Symmetry is:	
0. Orthorhombic 1. Diad on Z Enter 0 or 1 ==> 0	
Normalization factor: 1.20	
In output file, angles increase from 0 in nomenclature of 1. Kocks (need this one for WEIGHTS) 2. Roe/Matthies 3. Bunge (rotates plot +90 deg.)	
Enter 1,2, or 3 ==> 3	
Bunge表示	

popla. WPFとpopla. SODファイルが作成された。

ODFの確認は

ODFDisplayソフトウエアで

LaboTexのBunge phi1断面と同じになった。

🛓 Bunge

HARMONIC法のODF MaxはLaboTexやWIMV法に比べ方位密度が低下する。

Bungeのphi2 断面表示

🖆 ODFDisplay 1.103GT by CTR	
File Help	
ODFTXTFile M¥X¥CGC20.SHD	
Display- Bunge- Phi1 ☑ Phi2 □ Phi1	
Display	

🕌 Bunge

phi2=0.0 phi2=5.0 phi2=10.0 phi2=15.0 Max=30.8 28.0 25.2 22.4 19.6 16.7 13.9 11.1 8.3 6 O 5.5 ф ____ 2.7 \mathcal{O} 0 \bigcirc 0 Ø 8 0 Р phi1 V Phi a

再計算極点図の確認は

popLADatatoTXT2ソフトウエアで確認出来る。

sopLADatatoTXT2 1.310FTV by CTR	
File Help	
_SelectFilename	
C:¥X¥POPLA.WPF	
Comment line	
popla {111}{200}{220} 6 WIMV iter: 2.0%Fon= 0 9-DEC-** strength= 4.06	
FHKL or phi-	
{(111)} {(100)} {(110)}	
Create filename	_
(111)_POPLAWPF2.TXT (100)_POPLAWPF2.TXT (110)_POPLAWPF2.TXT	
File create 💿 PoleFigue 🔿 Square	

