StandardODFの概要

2008年5月11日

日本国内のODFは級数展開法が主流で、大阪府立大学の井上先生がゴースト軽減に奇数項の アルゴリズムを取り込む改良を加えた後、急速に普及した。

立法晶の方位解析では、ほとんどこのODFが使われている。

リガクの極点処理を行ったテキストデータをDATACONV ソフトを介して読み込みODF解析を 経て、ODF Φ 2 断面図、再計算極点図、逆極点図表示が行えます。

又、この計算結果はテキストファイルとして、DOFディレクトリに登録されています。 処理の流れ

測定

リガクWindowsシステムで極点測定を行う。 測定範囲は75度(極点の外側15度から極点の中心まで) 測定反射は3面が望ましい。(A1の場合(111),(200),(220)) 測定時バックグランド測定も同時に行う。

極点処理

RD補正、スムージング、バックグランド処理を行う。

規格化はrandom規格化を行う。

処理した結果を*. polファイルとして登録する。

テキスト変換

*. polデータはバイナリーファイルです。ODFで読み込めるファイルに変換

この変換はリガクソフトの標準付属をASC変換ソフトを使う。

StandardODFで読み込むフォーマットに変換

StndardODf付属のDATACONVソフト

リガク製ソフトPFtoODFソフト

StandardODF

上記変換されたデータを複数指定してODF計算を行う。

処理が完了すると、完全極点図の最大強度、再計算極点図の強度、逆極点図の強度を表示 等高線描画ソフトODFPLOT

ODF図、極点図、逆極点図を表示

ソフトウエアはシンプル

本ソフトウエアは、最初にしっかりしたODF計算部分があり、その計算部分に外部からデータを読み 込み、結果をファイル出力します。この部分がStandardODFです。

この計算結果を表示する部分がODFPLOTです。

どちらのソフトも処理がループしているのではなく、一回の処理で完了してしまいます。

ODF解析の重要な要素

XRD極点測定では、光学系によるDefcousの影響があります。

特にShultzの反射法では極点図の外側では測定強度が低下しています。

かならず、random試料による補正、あるいはDefocus補正曲線を作成して random補正を行って下さい。

性格なEuler角度はテキストデータから確認出来ます。

ASC変換

極点処理結果をテキストファイルに変換

	パイナリー→ASCII変換
	ファイル(F) ヘノレプ(H)
	変換実行 終了
	ファイル設定
	変換形式 汎用アスキー形式 ▼
	入力ファイル名 フォレ: Li 20070116 A Li試料の総合解析
	AI-Pole220.pol AI-Pole200.pol AI-Pole111.pol
	出力ファイル名 フォルダ: L:¥20070116 A L.試料の総合解析
	AI-Pole220.TXT AI-Pole200.TXT AI-Pole111.TXT
	改行文字 Windows/DOS形式(<cr+lf>) ▼</cr+lf>
i.	~ 你抱念件
	区切り文字 タ ブ (*** <tab> ***) ▼</tab>
\searrow	
	変換内容 「装置情報(ゴニオ,アタッチメント,モノクロ)
	変換内容 「装置情報(ゴニオ,アタッチメント,モノクロ) 「ファイル情報(サンプル,コメント、ファイル)
	変換内容 「装置情報(ゴニオ,アタッチメント,モノクロ) 「ファイル情報(サンプル,コメント、ファイル) 「測定条件(走査軸,走査モード,スノット,kン,wA,開始,終了,ステップ角度)
	変換内容 「装置情報(ゴニオ,アタッチメント,モノクロ) 「ファイル情報(サンプル,コメント、ファイル) 「測定条件(走査軸,走査モード,スリット,k∀,wA,開始,終了,ステップ角度) ▼ブロファイルデータ(20角度、強度)」 強度形式: 自動 ▼

極点処理結果(POL)縦一列のテキストデータに変換します。

変換されたデータ

0	0.0955765↓
5	0.0962182↓
10	0.0932095↓
15	0.0833748↓
20	0.0746286↓
25	0.0857957↓
30	0.132696↓
35	0.190343↓
40	0.2096534
45	0.1811394
50	0.1454544
55	0.1316594
160	0.1348264

β角度と強度データが登録されるが、α角度情報はありません。

StandardODFの場合、極点の中心(0度)、極点の開始α角度は75度

DATACONVソフトウエア

プログラムスタート画面

🤁 極点図データ変換	x
 測定装置 ・ <u>リガク製 - PC版</u> ・ リガク製 - UNIX版 (反射法) ・ マック・サイエンス製 	α角 測定範囲 間隔 5 β角 測定範囲 360 間隔 5
□ 極点図描画用データの作成	次へ キャンセル
αの開始角度に75度を入力	
日本 「「「「「「「」」 「「」」 「「」」 「」 「」 「」 「」 「」 「」 「	×
 測定装置 ● リガク製 - PC版 ● リガク製 - UNIX版 (反射法) ● マック・サイエンス製 	α角 測定範囲 75 間隔 5 β角 測定範囲 360 間隔 5
プァイル設定	
- 変換前のデータ読込先	
─変換後のデータ保存先 ────────────────────────────────────	参照
戻る	OK キャンセル
ファイル選択	

88 ファイル設定	×
変換前のデータ読込先 C¥tmp¥AI-Pole111.TXT 参照…	読込データ ● 縦一列形式 ○ 複数行形式
変換後のデータ保存先 C:¥ODF¥PFDATA¥AI-111.TXt 参照…	
戻る OK キャンセル	IL

OKで

😝 ファイル設定	
変換前のデータ読込先 CXtmpX0L Polo111 TVT	
	 変換が終了しました。他に変換する データがありますか?
C:¥ODF¥PFDATA¥AI-Pole111.txt	参 はい いいえ
戻る OK	キャンセル

3回繰り返す。

返還後の保存先に変換されたデータが登録されます。

Al-Pole111.txt	2008/05/11 7:15	TXT ファイル	12 KB
Al-Pole200.txt	2008/05/11 7:16	TXT ファイル	10 KB
Al-Pole220.txt	2008/05/11 7:16	TXT ファイル	10 KB

StandardODF

ODF Calculation		
面指数 重み ファイル名(フルバス)		Standard ODF
(100) J	参照	for Windows XP/Me/2000/98SE/98/ NT4.0/95 Ver.2.3 解析法について
C (110) 1	参照	
(111)	参照	品品方位分布関数————————————————————————————————————
C (210) 1	参照	展開次数 22
C (211) 1	参照	ゼロ密度領域のしきい値 03
□ (221) 1 · · · · · · · · · · · · · · · · · ·	参照	
(310) 1	参照	表示断面 (● Phi2断面
(311) 1	参照	
☐ (321) 1	参照	_ 再計算極点図
☐ (331) 1	参照	1 • 2 •
(411) <u>1</u>	参照	
(511)	参照	3 • 4 •
α max= $\Delta \alpha = 5$ $\Delta \beta = 5$		
β角のタイプ [●] β=0°, 5°, 10°, ······, 350°, 355° ○ β=25°, 75°, 125°, ·····, 3575°		1/4極点図 C係数 偶数項 奇数項 0% 100%
集合組織変換 ● しない ○ RD極点図 → ND-ODF ○ TD極点図 -	→ ND-ODF	実行(G) 終了(E)

ファイルの選択 選択する面指数にチェックを入れる。

_□ 極点図データ・			
面指数	重み	ファイル名(フルバス)	
🔽 (100)	1	C:¥ODF¥PFDATA¥	参照
🔽 (110)	1	C:¥ODF¥PFDATA¥	参照
💌 (111)	1	C:¥ODF¥PFDATA¥	参照
(210)	1		参照
E (011)	4	[<u> 44.977</u>

α M a x を入力

ファイル選択

_厂 極点図データ			
面指数	重み	ファイル名(フルバス)	
🔽 (100)	1	C:¥ODF¥PFDATA¥AI-Pole200.txt	参照
🔽 (110)	1	C:¥ODF¥PFDATA¥AI-Pole220.txt	参照
🔽 (111)	1	C:¥ODF¥PFDATA¥AI-Pole111.txt	参照
(210)	1		参照

再計算極点図の選択

「結晶方位分布関数――――
展開次数 22
ゼロ密度領域のしきい値 0.3
表示断面 C Phi1断面 © Phi2断面
「再計算極点図――――
1 100 💌 2 110 💌
3 111 - 4 -

処理条件はデホルトでOK

計算の開始

計算が完了すると

が表示されます。

等高線表示プログラムPDFPLOT

ODF図の表示

ODF/PF Plotting	×
ODF/PF 1. Complete ODF with odd term 2. Even term ODF 3. Recalculated pole figures 4. Inverse pole figures 5. Measured pole figures 4. Inverse pole figures 5. Measured	
Levels Number 15 • Interval 1 • Level 1 1.0 Level 2 2.0 Level 3 3.0 Level 4 4.0 Level 5 5.0	
Level 6 6.0 Level 7 7.0 Level 8 8.0 Level 9 9.0 Level 10 10.0 Level 11 11.0 Level 12 12.0 Level 13 13.0 Level 14 14.0 Level 15 15.0	
Figure © Normal Drawing © Fine Drawing OK Cancel	

Contour Levels: 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

再計算極点図の表示

逆極点図の表示

ValueODFによる入力データチェック(StandardODFの付属ではありません) ODF解析前の極点図と解析後の極点図の比較を行い、Defocus 補正量の大きい極点図の外側の 乖離を確認する。FileでStandardODFを選択(c:¥ODFが選択される) 計算結果が表示されます。

極点図の外側が下がり気味であるのでDefocus補正が少し足りない事を表しています。 しかし、±1.5%以内であるのでOK

valueODFの詳細は

http://www.geocities.jp/helpertex2/Soft/Soft-index.html

結晶方位の決定

ODF図 φ2断面45度に着目

メモ帳で c:¥ODF¥OUTPUT3.txt を開く

COMPLETE ODF, PHI2 PROJECTION

45.0 0.0 5.0 10.0 15.0 20.0

部分の最大強度

45.0	0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0	65.0	70.0	75.0	80.0	85.0	90.0
0.0	-0.3	-0.3	-0.4	-0.2	0.1	0.6	0.8	0.7	0.4	0.3	0.4	0.7	0.8	0.6	0.1	-0.2	-0.4	-0.3	-0.3
5.0	-0.3	-0.3	-0.3	-0.2	0.1	0.4	0.5	0.6	0.6	0.6	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0.1	0.1
10.0	-0.4	-0.4	-0.3	-0.1	0.1	0.2	0.2	0.4	0.7	1.1	1.0	0.5	0.0	0.1	0.5	0.6	0.5	0.3	0.2
15.0	-0.7	-0.7	-0.6	-0.2	0.3	0.5	0.3	0.1	0.5	1.0	1.1	0.7	0.3	0.2	0.3	0.3	0.2	0.3	0.3
20.0	-0.8	-0.8	-0.8	-0.3	0.3	0.6	0.3	-0.1	0.0	0.6	1.3	1.4	1.1	0.7	0.5	0.9	2.0	3.4	4.0
25.0	-0.6	-0.7	-0.7	-0.4	0.0	0.2	0.0	-0.3	-0.3	0.3	1.1	1.7	1.8	1.6	1.9	3.7	7.0	10.3	11.7
30.0	-0.5	-0.5	-0.5	-0.3	-0.1	-0.2	-0.2	-0.2	-0.1	0.0	0.4	1.1	1.6	2.0	3.1	6.0	10.4	14.5	16.2
35.0	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2	-0.2	0.1	0.2	0.0	-0.1	0.2	0.7	1.2	2.2	4.5	7.8	10.8	12.0
40.0	-0.4	-0.4	-0.5	-0.4	-0.2	-0.1	-0.1	0.0	0.2	0.2	0.1	0.2	0.2	0.2	0.4	1.1	2.3	3.6	4.2

から (ϕ 1、 Φ 、 ϕ 2) は、(90, 30, 45) が読み取れます。 この結果からこの近傍に極があることが分かります。 (hkl)[uvw]と Euler 角度の関係から(hkl)[uvw]を決めることになります。 CubicCODispによる方位解析 (StandardODFの付属ではありません)

S CubicCODisp 1.11DTV by CTR				
File Help				
Miller Indices				
u 1 v -1 v 0 v Calc				
φ1 Φ φ2 Calc Clear				
Position 10 Disp size 400 Disp				
Background Color Black Line size 1.0				

予測される Euler 角度を入力さいて Calc でチェックを行う。

Calc で入力した Euler 角度が(0.0,0.0,0.0)が表示される場合、入力する Euler 角度の変化させてください。 (90,30,45)では決まりません。

(90,25,45)の場合方位が計算されます。その場合、方位で Euler 角度を再計算します。

S CubicCODisp 1.11DTV by CTR	🛃 CubicCODisp 1.11DTV by CTR
File Help	File Help
Miller Indicesh1 \checkmark k1 \checkmark \land \checkmark	Miller Indicesh1 \mathbf{v} 1 3 \mathbf{v} \mathbf{calc} u -3 \mathbf{v} -3 \mathbf{w} 2 \mathbf{Calc}
Euler Angles ϕ 1 90 Φ 25 ϕ 2 45 Calc Clear	Euler Angles φ1 90.0 Φ 25.239 φ2 45.0 Calc Clear
Position 10 Disp size 400 Disp	Position 10 Disp size 400 Disp
Background Color Black 💌 Line size 1.0 💌	Background Color Black Line size 1.0

又、(90,35,45)でも(112)[-1-11]が計算されます。

S CubicCODisp 1.11DTV by CTR				
File Help				
Miller Indices				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Calc			
Euler Angles				
φ1 90.0 Φ 35.264 φ2 45.0 Calc	Clear			
Position 10 💌 Disp size 500 💌	Disp			
Background Color Black Line size 1.0	•			

Dispで結晶方位の表示が可能

