鉄試料の defocus 補正にアルミニウムrandom 試料を用いる

目的

鉄の defocus 補正曲線をアルミニウムで作成し、defocus 補正を行う。 ODFPoleFigure2 ソフトウエアで予測Rp%が最小になる適正化Rp%モードで補正を行う。

最適化 Rp%と ODF 解析後の Rp% (ValueODFVF)

2015年10月14日 *HelperTex Office*

材料-F e ¥2012-05-21-SmartLab¥

1. 概要

鉄系の極点図解析ではdefocus補正のためのrandom試料が得難い状況で

アルミニウムのrandom試料を利用することがあります。

以下にアルミニウムによる random 測定データを鉄の defocus 補正として利用する方法を説明します。

A-IronDISP Cubic 2.8664 2.8664 2.8664	(1.0) (1.0) (1.0)					AluminumE Cubic 4.0494 4.0494 4.0494 90.0	(1.0) (1.0) (1.0)				
90.0 90.0 90.0 1.78897						90.0 90.0 1.78897 9					
6						1	1	1	100.0 47.0	2.3379	44.989 52.436
1	1	0	100.0	2.0269	52.376	2	2	õ	22.0	1.4317	77.332
2	0	0	20.0	1.4332	77.235	3	1	1	24.0	1.2209	94.213
2	1	1	30.0 10.0	1.1702	99.705 123.024	2	2	2	7.0	1.169	99.849
-	<u>-</u>	-			120.824	4	0	0	2.0	1.0124	124.153

2. アルミニウム random 試料の測定(鉄の defocus 補正に利用)

鉄の defocus 補正のために、

アルミニウムの(200),(220),(222)の測定を鉄と同じ(110),(200),(211)として測定を行います。 測定データ

🖪 110_ref_Al-random_β.asc	2012/05/24 14:32	RINT200077+-	21 KB
🖪 200_ref_Al-random_β.asc	2012/05/24 15:08	RINT200077+-	21 KB
🖪 211_ref_Al-random_β.asc	2012/05/24 15:58	RINT200077+-	21 KB

2. 1 defocusファイルの作成

✓ ODFPoleFigure2 3.42YT[15/12/31] by CTR						
File Linear(absolute) ToolKit Help InitSet BGMode Measure Condition Free OverlapRevision MinimumMode Rp% Files select ASC(RINT-PC) • Ill_ref_Al-random_β asc 200_ref_Al-random_β asc 211_ref_Al-random_β asc						
Calcration Condition Previous Next W#測定データOW材料-FE¥2012-05-21-SmartLab¥Co¥BB¥Rp¥Al-random¥110_ref_Al-random_ß asc Packgroud delete mode @ @ DoubleMode SingleMo LowMode HighMode Nothing BG defocus DSH12mm+Schulz+RSH5mm Minimum mo Peak slit 100 mm @ PeakSlit / BGSlit BG Scope 80.0 deg. Set Disp RD 0.0 Interporation Full Disp Absorbtion coefficien 133.0 1/cm Thickness 0.2 cm 2 Theta 52.37 dog 0 1/Kt Profile						
Defocus file Select Image: Control of the select Image: Control						
Defocus(3) function files folder(Calc unbackdefocu BB185mm Limit Alfa Defocus value Free(LimitValue=0.0) Defocus(2) function files folder(Calc backdefocus) DSH12mm+Schulz+RSH5mm Search minimum Rp%(Cubic only) I/Ra Profile						
Smoothing for ADC Cycles 2 Veight 4 Disp Standardize Calc Calc Calc Exit&ODF ValueODFVF-B ValueODFVF-A ValueODFVF-A						

バックグランド除去のみの処理を行う。

測定されているデータの平均値で規格化された値が表示されま,TXT2ファイルが作成される。

📳 110_ref_Al-random_β_chB00S_2.TXT	2015/10/14 15:44	テキスト文書	22 KB
📳 200_ref_Al-random_β_chB00S_2.TXT	2015/10/14 15:44	テキスト文書	22 KB
📳 211_ref_Al-random_β_chB00S_2.TXT	2015/10/14 15:44	テキスト文書	22 KB
SLITTTHETAFILE	2015/10/14 15:44	ファイル	1 KB

2. 2 TXT2 ファイルを defocus として登録

複数の TXT2 ファイルを選択すると DEFOCUS ファイルが作成される。


```
í TextDisplay 1.12S W:¥測定データ 0 ¥材料 – F E ¥2012-05-21-SmartLab¥Co¥BB¥Rp¥Al-random¥defocus¥DEFO... 📼 😐 🗴
```

пе нер

 $\label{eq:scalar} filename, alfanumber, alfastartangle, alfastep, function-n, mm, 15/10/14 3.10 for DefocusCalc, 110_ref_Al-random_\beta_chB00S_2.TXT, 16, 0.0, 5.0, 5, 10.0, 1.0084430318812865, 0.002245006940562261, -1.6627974177 200_ref_Al-random_\beta_chB00S_2.TXT, 16, 0.0, 5.0, 5, 10.0, 1.0016291911504487, -0.004203695197600234, 4.1965430585 211_ref_Al-random_\beta_chB00S_2.TXT, 16, 0.0, 5.0, 5, 10.0, 1.0140612599178984, 8.435871457177866E-4, -6.57595776188 211_ref_Al-random_b_chB00S_2.TXT, 16, 0.0, 5.0, 5, 10.0, 1.0140612599178984, 8.435871457177866E-4, -6.57595776188 211_ref_Al-random_b_chB00S_2.TXT, 16, 0.0, 5, 0.0, 5, 10.0, 1.0140612599178984, 8.435871457177866E-4, -6.57595776188 211_ref_Al-random_b_chB00S_2.TXT, 16, 0.0, 5, 0.0, 5, 10.0, 1.0140612599178984, 8.435871457177866E-4, -6.57595776188 211_ref_Al-random_b_chB00S_2.TXT, 16, 0.0, 5, 0.0, 5, 10.0, 1.0140612599178984, 8.435871457177866E-4, -6.57595776188 211_ref_Al-random_b_chB00S_2.TXT, 16, 0.0, 5, 0.0, 5, 10.0, 1.0140612599178984, 8.435871457177866E-4, -6.57595776188 211_ref_Al-random_b_chB00S_2.TXT, 16, 0.0, 5, 0.0, 5, 10.0, 1.0140612599178984, 8.435871457177866E-4, -6.57595776188 211_ref_Al-random_b_chB00S_2.TXT, 16, 0.0, 5, 0.0, 5, 0.0, 5, 0.0, 5, 0.0, 5, 0.0, 5, 0.0, 5, 0.0, 5, 0.0, 5, 0.0, 5, 0.0, 5, 0.0, 5, 0.0, 5, 0.0, 5, 0.0, 5, 0.0, 5, 0.0, 5, 0, 5$

DEFOCUSテーブルで重要なのは、先頭の指数です。この指数で鉄の defocus 曲線が特定されます。 アルミニウムの極点測定時、同一角度の鉄の指数とした理由です。

3. SUSの配向試料データ

🖪 211_ref_sus_β.asc	2012/05/22 13:21	RINT200077+-	22 KB
🖪 200_ref_sus_β.asc	2012/05/22 12:54	RINT200077+-	22 KB
🖳 110_ref_sus_β.asc	2012/05/22 12:18	RINT200077+-	22 KB

3.1 SUSの配向試料の補正を行う。

ODFPoleFigure2 3.42YT[15/12/31] by CTR						
File Linear(absolute) Found help initset bigmode measure Condition Free Ovenapkevision minimummode kp%						
ASC(RINT-PC) 🔹 😰 110_ref_sus_ß asc 200_ref_sus_ß asc 211_ref_sus_ß asc						
Calcration Condition Previous Next W¥期定データO¥材料 - FE¥2012-05-21-SmartLab¥Co¥BB¥Rp¥SUS¥110_ref_sus_6 asc Backgroud delete mode ③ ● DubleMode ⑤ SingleMo ⑥ LowMode ⑥ HighMode ⑥ Nothing BG defocus DSH12mm+Schulz+RSH5mm ▼ ◎ Minimum mo. ③ ③ ◆ Arithmetic mean ● Disp Peak slit 100 mm BG Slit 100 mm ⑦ PeakSlit / BGSlit BG Scope 80.0 deg. Set Disp ⑦ 0.0 Interporation ▼ Full Disp Peak slit 100 mm BG Slit 100 mm ⑦ PeakSlit / BGSlit BG Scope 80.0 deg. Set Disp ⑦ 0.0 Interporation ▼ Full Disp AbsCalc ⑤ Schulz reflection method ◆ Absorption coefficien 133.0 1/cm Thickness 0.2 cm ▼ 2Theta 52.17 deg. ◎ 1/Kt Profile Defocus file Select ⑦ ◎ Defocus file Select						
Detocus () functions file W#4#025 ->00#0474 - F E2012-05-21-SmartLabeCoebBerp#Ai-random#detocus#UEFOCUS_F.1X1 Make defocus function files by TXT2 Files V Standardize TextDisp						
Defocus(3) function files folder(Calc unbackdefocu BB185mm Limit Alfa Defocus value Free(LimitValue=0.0)						
© Defocus(2) function files folder(Calc backdefocus) DSH12mm+Schulz+RSH5mm →						
Smoothing for ADC						
Cycles Z Weight 4 Disp V Asc Ras VIXI VIXI2 ValueODFVF-B ValueODFVF-A						

3. 2 バックグランド除去とdefocus補正を適正化Rp%モードで行う。

₩ {1,1,0}5.29			heta 52.17 deg. 1/Kt Profile
			:US_F.TXT
			Free(LimitValue=0.0) + bic only) () 1/Ra Profile
			ncel Calc Exit&ODF ODF ValueODFVF-B ValueODFVF-A
Search Rp% (1,1,0) 7.97% -> 7.52% (2,0,0) 6.7	6% -> 6.6% (2,1,1) 4.2% -> 4.19% Filemake succes	s!!	

適正化Rp%モードの結果

Search Rp% (1,1,0) 7.97% \rightarrow 7.52% (2,0,0) 6.76% \rightarrow 6.6% (2,1,1) 4.2% \rightarrow 4.19% Filemake success!!

再計算された DEFOCUS テーブルは、C:¥CTR¥work¥ODFPoleFigure2 に作成されています。

3.3 適正化Rp%モードを行わない場合

ValueODFVF-B

3. 4 適正化Rp%モードの場合

適正化Rp%モードで改良されている。

鉄の defocus 補正にアルミニウムが利用できる事が分かります。

4. StandardODF向けデータの作成

A transformed to the second to			Initialize				
Structure Code(Symmetries after Schoenfiles) 7 - O (cubic) -							
a 1.0 <=b 1.0 <=c 1.0 alfa 90.0 beta 90.0 gamm 90.0							
PF Data							
SelectFile(TXT(b,intens),TXT2(a,b,intens))	h,k,l	2Theta Alfa Area	AlfaS AlfaE Select				
2.TXT	1,1,0	52.17 0.0->75.0	0.0 75.0 🔽				
200_ref_sus_β_chB00D1S_2.TXT	2,0,0	76.92 0.0->75.0	0.0 75.0 🗸				
211_ref_sus_β_chB00D1S_2.TXT	2,1,1	99.3 0.0->75.0	0.0 75.0 🔽				
	2,1,0	0.0	0.0 0.0				
	2,1,1	0.0	0.0 0.0				
	3,1,1	0.0	0.0 0.0				
	4,0,0	0.0	0.0 0.0				
	3,3,1	0.0	0.0 0.0				
	4,2,2	0.0	0.0 0.0				
	5,1,1	0.0	0.0 0.0				
	5,2,1	0.0	0.0 0.0				
	5,3,1	0.0	0.0				
Comment 110_ref_sus_β_chB00D1S_2.TXT 200_ref_su	s_،۵_chB00D1S_2	.TXT 211_ref_sus_β_chB(IOD IS_2.TXT				
		Labotex(EPF),popL	A(RAW) filename				
Symmetric type Full StandardODF text SUS							

5. StandardODFにより解析

COF Calculation				
種点図データ	C 1 LODE			
面指数 重み ファイル名(フルバス)	Standard ODF			
✓ (100) 1 ✓ (¥期定データO¥材料-FE¥2012-05-2) 参照	for Windows XP/Me/2000/98/SE/98/ NT4.0/95 Ver.2.4 解析法について			
▼ (110) 1 V.¥測定データO¥材料-FE¥2012-05-2 参照				
□ (111) 1 参照	-結晶方位分布関数			
(210) 1 参照	展開次数 22			
▼ (211) 1 V¥測定データO¥材料-FE¥2012-05-2 参照	ゼロ密度領域のしきい値 0.3			
□ (221) 1 参照	C Pbi1批后面			
□ (310) 1 参照	表示断面			
□ (311) 1 参照				
□ (321) 1 参照	再計算極点図			
□ (331) 1 参照	1 100 • 2 110 •			
□ (411) 1 参照				
(511) 1 参照	3 211 • 4 •			
α max= 75 $\Delta \alpha$ = 5 $\Delta \beta$ = 5				
β角のタイプ ◎ β=0°, 5°, 10°, ·····, 350°, 355° ○ β=2,5°, 7,5°, 12,5°, ·····, 357,5°	1/4種点図 C係数 偶数項 奇数項 0% 100%			
┌集合組織変換				
『 しない C RD極点図 → ND-ODF C TD極点図 → ND-ODF 実行(G) 終了(E)				

5.1 ODF解析結果

5. 2 ValueODFVFでErrorの確認

ODF 解析前の予測 Error

線の色が異なっていますが、ほぼ予測 R p %に相関があります。

事前に、最小Rp%になる補正を行うことで、ODF解析結果のErrorを下げることが出来ます。