popLAソフトウエアと周辺ソフトウエアの使い方

(Rigaku, Bruker, PANalyticalデータに対応)

Cubic, Hexagonal極点のODF解析

ODF図

マウス操作で結晶方位の決定

逆極点図

Direction, Plane方位の決定の自動決定

ODF解析を行うことで、Rp%を算出し、極点図のError評価が行えます。

2016年1月27日 HelperTex Office

- 1. 概要
- 2. 入力データ
- 3. 極点図データ補正
 - 3. 1 ODFPoleFigure2 ソフトウエア
 - 3.2 測定データの選択
 - 3.3 データ処理条件を設定
 - 3. 4 一括正極点図データ処理
- 4. popLA用入力データの作成
 - 4.1 PFtoODF3プログラムにTXT2データ
- 5. popLAによる解析
 - 5.1 popLA プログラムの立ち上げ
 - 5.2 RAWファイルからEPFファイルを作成
 - 5.3 WINVを使う
 - 5.4 WINVのODF図、再計算極点図表示
 - 5.5 Harmonic法
 - 5.6 Harmonic法の ODF 図、再計算極点図を表示
- 6. 結晶方位の解析(Cubic)
 - 6.1 マウスクリックによる結晶方位図
 - 6.2 結晶方位の自動検出
 - 6.3 結晶方位のFamily化List作成
 - 6.4 GPODFDisplay機能
- 7. Error評価
- 8. 逆極点図
- 9. 再計算極点図の等高線表示

1. 概要

popLAソフトウエアは、Loss Alamosで作成されたODFでHarmonicと WIMV法がサポートされている。Dosベースで作成されている。

(WIMV は開発者の名前で、Williams method, Imhof method を Matthies と Vinel が結合) R i g a k u A S C データ形式を入力、

Bruker社 (Uxd), PANalytical (TXT, rdml) はASC変換ソフトウエアで 対応しています。

今回、配向評価総合パッケージCTRソフトウエア(2012/10/01)との関連で、操作方法の 説明を行います。

- 2. 入力データ
 - 測定装置 リガク製RINT2200+多目的試料台
 - 測定試料 A1材
- 3. 極点図データ補正
 - 3. 1 ODFPoleFigure2 ソフトウエア

(詳しくは、<u>http://www.geocities.jp/helpertex2</u>)

ODFPoleFigure2 ソフトウエアを起動

M ODFPoleFigure2 3.46YT[16/06/30] by CTR
File Linear(absolute)3D ToolKit Help InitSet BGMode Measure(Calc) Condition Free OverlapRevision MinimumMode Rp%
Files select
Calcration Condition
Backgroud delete mode
Peak slit 7.0 mm BG Slit 7.0 mm 🗹 PeakSlit / BGSlit BG Scope 80 deg. 90 deg. Set Disp
AbsCalc Schulz reflection method
Defocus file Select Image: Constraint of the select of th
Defocus(3) function files folder(Calc unbackdefocus) BB185mm Limit Alfa Defocus value Free(LimitValue=0.0)
Defocus(2) function files folder(Calc backdefocus) DSH12mm+Schulz+RSH5mm Search minimum Rp%(Cubic only) O 1/Ra Profile
Smoothing for ADC OutFiles Cycles 2 Weight 4 Disp OutFiles Asc Ras TXT TXT2 Cancel Calc Exit&ODF ODF ValueODFVF-B ValueODFVF-A

3.2 測定データの選択

3. 3 データ処理条件を設定する。

バックグランドは計算で補正する。 平滑化は α 方向、5 点データ Savitzky-Golay 法

M ODFPoleFigure2 3.46YT[16/06/30] by CTR			
File Linear(absolute)3D ToolKit Help InitSet BGMode Me	asure(Calc) Condition Free OverlapRev	vision MinimumMode Rp%	
Calcration Condition			- hkl
C:#CTR#DATA#ODFPoleFigure2#111.AS	>		1,1,1 Change
Backgroud delete mode	othing BG defecus	Smoothing	thmetic mean
Peak slit 7.0 mm BG Slit 7.0 mm 🖤 PeakSlit / BGSlit I	G Scope 80.0 deg. 90.0 deg. Set	Disp 0.0 Inter	rporation 🗸 🗌 Full Disp
AbsCalc			
Schulz reflection method	13.9 I/cm Thickness U. I	cm 21neta 38.46 deg.	Profile
Defocus(1) functions file C¥CTB¥DATA¥ODE	PoleFigure¥random¥defocus¥DEFOCUS FITXT		
Make defocus function files by TXT2 Files	▼ V Standardize		TextDisp
Defocus(3) function files folder(Calc unbackdefocus)	BB185mm 👻 Limit Alfa	a Defocus value Free(LimitValue=0	.0) 🔻
Defocus(2) function files folder(Calc backdefocus)	DSH12mm+Schulz+BSH5mm 👻 🔲 Searc	ch minimum Rp%(Cubic only)	I/Ra Profile
Smoothing for ADC	dize Asc Ras TXT @	TXT2 Cancel Calc	Exit&ODF ODF
		ValueO DFVF-B	ValueODFVF-A
/			
			0/
deiocusはケータハームから計算	処理結果はIAI27	ーク 取週化化	р %
3. 4 括正極点図データ処理を行	う。		
	■ ■ X {2,2,0}4.55		
		6	
	 Institute 		
		処理された極点図が表示	され、
最適化 R n % で、極点図の最適化が行わ	れます。		
Search Rp% (1,1,1) 2.27% -> 2.29%	(2,0,0) 4.4% -> 4.18% (2,2,0) 5.34	I% → 4.89% Filemake succe	ess!!
	ile		
	ODF Fileがアクラ	ティブとなる。	
テキストデータも作成されている			
■ 111_chGB02D2S_2	2012/09/23 9:14 テキスト文書	22 KB	
■ 200_chGB02D2S_2	2012/09/23 9:14 テキスト文書 2012/09/23 9:14 テキスト文書	22 KB	
111.ASC	2012/07/25 10:15 ASC ファイル	22 KB	
200.ASC	2012/07/25 10:15 ASC ファイル	22 KB	
	2012/07/25 10:15 ASC ファイル	22 KB	
 popLA用人刀アータの作成 			
Cancel	ODF File		
Galicon	ODF 1	File を押す。	

4.1 PFtoODF3プログラムにTXT2データが引き継がれる。

1	Material				Initialize —	Start
Struct	ure Code(Symmetries after Schoenfiles)			•	⊚ getH	KL<-Filenam
a 1.0	<=b 1.0 <=c 1.0 alfa	90.0 beta 9	10.0 ga	mm 90.0	A 🔁	IIFileSelect
· n-1-	SelectFile(TXT(b,intens),TXT2(a,b,intens)) h,k,l	2Theta	Alfa Area	AlfaS A	IfaE Selec
Ê	111_chGB02D2S_2.TXT	1,1,1	38.46	0.0->75.0	0.0	75.0
2	200_chGB02D2S_2.TXT	2,0,0	44.7	0.0->75.0	0.0	75.0
2	220_chGB02D2S_2.TXT	2,2,0	65.08	0.0->75.0	0.0	75.0
2		2,1,0	0.0		0.0	0.0
2		2,1,1	0.0		0.0	0.0
2		3, 1, 1	0.0		0.0	0.0
È		4,0,0	0.0		0.0	0.0
2		3,3,1	0.0		0.0	0.0
2		4,2,2	0.0		0.0	0.0
2		5, 1, 1	0.0		0.0	0.0
2		4,4,0	0.0		0.0	0.0
2		5,3,1	0.0		0.0	0.0
Comm	ent 111_chGB02D2S_2.TXT 200_chGB02D2	S_2.TXT 220_chGB	02D2S_2.	ТХТ		
Symme	etric type Full	Epf file save		Labotex(EPF),popLA	4(RAW) filena	me

メニュー OptionからStandardODFを選択

🛓 PFto	DDF3 8.04YT[13/03/31]			
File [Op	uon symmetric sortwar			
ſ	Outside text			
	Inside text			
	Labotex CW			
	Stadard ODF			
L L	Siemens			
	TexTools(txt)			
	*TexTools(pol) CCW	Symmetric type Full	popLA(RAW) CW text	Labotex(EPF),popLA(RAW) filename
	TexTools(pol) CW			
	*popLA(RAW) CW]		
	popLA(RAW) CCW			

popLA(RAW)CWtext に変化する。File から ConditionSave を行えばこの作業は不要

popLA(RAW)CWTEXT を押す。

処理を行ったディレクトリにpopLAディレクトイが作られる。

111_chGB02D2S_2	2012/09/23 9:47	テキスト ドキュ	22 KB
200_chGB02D2S_2	2012/09/23 9:47	テキスト ドキュ	22 KB
220_chGB02D2S_2	2012/09/23 9:47	テキスト ドキュ	22 KB
111.ASC	2012/07/25 10:15	ASC ファイル	22 KB
200.ASC	2012/07/25 10:15	ASC ファイル	22 KB
220.ASC	2012/07/25 10:15	ASC ファイル	22 KB
311.ASC	2012/07/25 10:15	ASC ファイル	22 KB
퉬 popLA	2012/09/23 22:17	ファイル フォル…	
StandardODF	2012/09/23 22:07	ファイル フォル…	

popLAF ディレクトリに作成されるデータ

】 🕨 コンピューター 🕨 Windows-7	7-32-D0 (C) ▶ CTR ▶ DATA ▶	ODFPoleFigure2 > p	oopLA 👻 🗲	popLAの検索	
ライブラリに追加 ▼ 共有 ▼	書き込む	新しいフォルダー				i≡ - E
.入り	<u>^</u>	名前		更新日時	種類	サイズ
ンロード		AI.DFB		2012/09/23 22:17	DFB ファイル	1 KB
クトップ		Al.RAW		2012/09/23 22:17	RAW ファイル	18 KB

以上でpopLA向けデータ作成が完了

5. popLAによる解析

まず、Al.RAW と Al.DFB を C:¥X にコピーする。

Dosの立ち上げ popLA プログラムの c:¥X にディレクトリを変更

作業としては、

①RAWファイルからEPFファイルを作成

②WIMV法

③再計算極点図

5.2 RAWファイルからEPFファイルを作成

2.) を選択

3.) を選択

2012/09/23 22:17 17,445 A1.RAW 2009/10/28 03:48 17,674 DEMO.RAW

Note: the sample is assumed to have rotated counter-clockwise Data will be sequenced clockwise in .EPF

Enter name of raw data file (ext .RAW assumed)

Al.raw と Al.DFB ファイルを指定

Enter name of raw data file (ext .RAW assumed) AL Enter name of correction file (ext .DFB assumed)Al

EPF ファイルが作成される。

📾 コマンド プロンプト - newpopla	
Al 111_chGB02D2S_2.TXT 200_chGB02D2S_2.TX (hkl)=(200) Background= 1 Using correction curve 2 correcting raw data extrapolating outer ring	A III
DATA FAKED beyond .0 degrees normalizing. ring(j),ibgx(j)= 0.000000E+00 0 Normalization factor= .668 writing corrected data to AL .EPF	
Al 111_chGB02D2S_2.TXT 200_chGB02D2S_2.TX (hkl)=(220) Background= 1 Using correction curve 3 correcting raw data extrapolating outer ring	
DATA FAKED beyond .0 degrees normalizing. ring(j),ibgx(j)= 0.000000E+00 0 Normalization factor= .440 writing corrected data to AL .EPF Stop - Program terminated.	
続行するには何かキーを押してください	-

Return を押して続行

<pre>MASSAGE DATA FILES (mostly PFs) 0. Quit 1. Return to Page 1 2. "Make THEORETICAL defocussing & backgrour 3. DIGEST Raw Data (.RAW), with exper.or the 4. ROTATE PFs or adjust for grid offsets: ma 5. TILT PFs around right axis: make .TPF (T. 6. SYMMETRIZE PFs: make .QPF or .SPF or .FPF 7." EXPAND PFs back to full circle (needed f 8. SMOOTH PFs or ODs with Gaussian Filter (c 9. Take DIFFERENCE between 2 files (PFs or C Please type a number from 0 to 9 ==></pre>	(popLA page 2) od file: .DFB (R. Bolmaro)" eorDFB: make .EPF ake .RPF or .JWC Ozturk) [TO BE REPLACED] for WIMV & harm.): .FPF" quad, semi, or full): make .MPF DDs): make .DIF
Page1 に戻る。	
popLA: preferred orientation package - Los (U.F. Kocks, J.S. Kallend, H.R. Wenk (May 19 0. QUIT	Alamos (Page 1) 99)
 Get specimen DIRECTORY and VIEW a file MASSAGE data files: correct,rotate,tilt WIMV: make spec.SOD; calculate PFs and HARMONIC analysis: COMPLETE rim (.FUL). 	,symmetrize,smooth,compare inverse PFs; make matrices get Roe Coeff.file (.HCF)
5. CONVERSIONS, permutations, transformation	ons, paring

6. DISPLAYS and plots
7. Derive PROPERTIES from .SOD or .HCF files, make WEIGHTS file for simul.
8. DOS (temporary: type EXIT to return)
Please type a number from 0 to 8 -->

5.3 WINVを使う

WIMV Analysis	(popLA page 3)
0. Quit	
1. Return to Page 1	
WIMV: make .SOD and recalc. pole f	igures .WPF for:
2. cubic, tetra-, hexagonal crystal	s; sample diad: up to 3 PFs, 13 poles
3. trigonal cry.,gen'l.sample sym.	,or higher: up to 7 PFs, 25 poles
orthorhombic crystals; gen'l.sa	mple sym.: up to 7 PFs, 25 poles
Recalculate POLE FIGURES (even non	-measured ones): make .APF -
5. using .WIM matrix for the desir	ed PFs (up to 3, 13 poles)
6. using .BWM or .WM3 matrix for t	he desired PFs (up to 7, 25 poles)
7. Calculate INVERSE pole figures	from .SOD: .WIP
[So far assumes tetragonal crys	tal symmetry)
8. Make WIMV pointer matrix for ne	w crystal structure and set of PFs
9. Make WIMV pointer matrix for an	y INVERSE pole figures: make .WMI
riease type a number from 0 to 9 -	->
2.) 一个件目本 在长台 2	
2.) で結晶糸の指定2	
2009/09/25 13:39	6,448 BCC2.WIM
2009/09/25 13:39	4,892 BERYL.WIM
2009/09/25 13:39	8,458 C112.WIM
2009/09/25 13:39	9.300 CUBTC.WTM
2009/09/25 13:39	6 892 TTTAN WTM
2009/09/25 13.60	6 890 ZTRCON WTM
2007/07/20 10:40	4,050 2110011111
ODE HNHEASIS - MIWA HEGORIIHW	
LUPYRIGHT (C) 1987,1988 JUHN S	. KHLLEND
	0.2
*** Version Sentember 19	9.1 ***

Enter the name of the wimv matrix (?.WIM) [Default is CUBIC] ==>

CUBIC が default なので単に return

Enter the name of the wimv matrix (?.WIM) [Default is CUBIC] ==> Name of data file (default extension .epf): Al

Al を指定する。

対称性は 1/4 として0を指定

A1	111_chGB0	2D2S_2.T	XT 20			
111	5.0 75.	0 5.036	0.01	1 2-1 3	100	Ø
200	5.0 75.	0 5.036	0.01	1 2-1 3	100	Ø
220	5.0 75.	0 5.036	0.01	1 2-1 3	100	Ø
The	minimum p	ole figu	re int	ensity i	S	.05
Doy	vou wish t	o raise	the Fo	n? N		

Return で

```
Iteration 2 in progress

Sharpening may cause larger error in iteration 3

Texture Strength (m.r.d.): 1.5

(= square-root of "Texture Index")

Iteration 2 estimated OD error (%) = 33.1

Iteration 3 in progress

Texture Strength (m.r.d.): 1.6

Iteration 4 in progress

Texture Strength (m.r.d.): 1.6

Iteration 4 estimated OD error (%) = 12.1

Iteration 5 in progress

Texture Strength (m.r.d.): 1.6

Iteration 5 in progress

Texture Strength (m.r.d.): 1.6

Iteration 5 estimated OD error (%) = 9.2

Iteration 6 in progress

Texture Strength (m.r.d.): 1.7

Iteration 6 estimated OD error (%) = 7.2

Continue? Y
```

Error が小さくなるまで、return する。

```
Continue? Y
Iteration 62 in progress
Texture Strength (m.r.d.): 1.8
Iteration 62 estimated OD error (%) = .3
```

Continue? Y

nで終了する。

Continue? n

Normalization factor: 1.11 In output file, angles increase from 0 in nomenclature of 1. Kocks (need this one for WEIGHTS) 2. Roe/Matthies 3. Bunge (rotates plot +90 deg.) Enter 1.2, or 3 ==> 3

Bungeを得る。

Enter 1,2, or 3 ==> 3 Making file Al .SOD Recalculated PF file name: Al .WPF 続行するには何かキーを押してください ...

計算終了

5.4 WINVのODF図、再計算極点図表示

ODFDisplayでODF図を描画

🛃 ODFDisplay2 1.27YT[13/12/31] by CTR
File RoeModeEnable Help 3dispODF OtherODF
ODF
C#X#ALSOD (BUNGE)
Contour (Max=40) ODFMax= 24.31 DispMax 24 Steplevel 1 Number=24
Sample Symmetry(\$\$1)
Orthorombic φ1range 0->90
[Display
Bunge Phi1
Smoothing Cycle 1 Center points 9 Display

popLADatatoTXT2で極点図を描画

🛃 popLADatatoTXT2 1.40X by CTR	
File Help	
SelectFilename C¥X¥ALAPF	
Comment line AI 111_chGB02D2S_2.TXT 20calculated by SOD2PF 24-SEP-**	
HKL or phi {(001)} {(011)} {(111)}	
Create filename (001)_ALAPF2.TXT (011)_ALAPF2.TXT (111)_ALAPF2.TXT	
File create PoleFigure Square	

1/4対称 CW 極点図を完全極点図で表現する。

J.U
 24.0
 23.0
22.0
21.0
20.0
19.0
18.0
17.0
 16.0
 16.0
 14.0
14.0
13.0
12.0
 11.U
10.0
 9.0
 8.0
7.0
6.0
5.0
4.0
3.0
 0.0
2.0

ODFDisplay は多彩な表現が可能

Fiber も可能

この Fiber 解析した結果の表示が FIberMultiDisplay である。

-LaboTex,TexTools,STD,popLA- ODFExportFile	ODFDisplay	Contour & fcc bcc fiber disp
ODFFiber TXT ODFDisplay export files	FiberMultiDisplay	ODF fiber files dsiplay
LaboTex- ODF export file	ODFEulerAngle	ODF maxF EulerAngle (hkl)[uvw]
-ReCalc PoleFigure File Export PoleFigure file	MakePoleFile	TXT2,TXT,ASC

他にも ODF をサポートするソフトウエアを数多く取り揃えてあります。

5. 5Harmonic法

すでにEPFファイル作成はWIMV法を使用時作成されているので省く

2.)Cubic を指定

そのままで

📼 コマンド プロンプト - newpopla

Harmonic Pole Figure Analysis (Cubic) Program (C) 1968-1987 by John Kallend. All rights reserved Enter name of data file (default .epf): Al ALepfを指定 Harmonic Pole Figure Analysis (Cubic) Program (C) 1968-1987 by John Kallend. All rights reserved Enter name of data file (default .epf): Al 1Al 111_chGB02D2S_2.TXT 20 3 Pole figures read in. How many iterations on missing parts? 4

1/4 対称で

🔤 コマンド プロンプト	- newpopla				
200 Reflection 220 Reflection Severity =	n. Trunc. error n. Trunc. error 1.319. Generate	= .14 Nor = .20 Nor ed to 1 = 22	malization = malization =	.10E+01 .10E+01	
ERROR ESTIM L 0 2 4 6 8 10 12 14 16 18 20 22 ALL 2. Estimated RE-ESTIMATING	ATES: 1. Polefig MEAN .228E-06 .684E-03 .517E-03 .860E-03 .684E-03 .715E-03 .715E-03 .721E-03 .168E-03 .171E-03 .168E-03 .179E-03 .486E-01 avg. error in OI G MISSING PARTS	gures 111 .225E-06 .509E-03 .334E-03 .109E-02 .435E-03 .930E-03 .546E-03 .488E-03 .346E-04 .246E-03 .156E-04 .156E-04 .487E-01 OF .16 OF POLEFIGU	200 .225E-06 .581E-03 .786E-03 .399E-03 .622E-03 .588E-03 .114E-03 .102E-02 .129E-03 .958E-04 .104E-03 .139E-03 .481E-01	220 .233E-06 .897E-03 .934E-03 .909E-03 .567E-03 .384E-03 .384E-03 .384E-03 .259E-03 .133E-03 .217E-03 .217E-03 .277E-03 .489E-01	
Writing harmon Print out Wlm	nic coefficients n coefficients	s to Al ? Y	. HCF		

展開係数Cが作成され

20 14 20 .241E-04 20 16 0 157E-04 20 16 4 304E-04 20 16 8 .208E-06 . 20 16 12 .124E-04 20 16 16 .157E-04 20 16 20 138E-04 20 18 0 .165E-04 20 18 4 113E-04 20 18 8 .716E-05 20 18 12 .149E-04 20 18 16 .179E-04 20 18 20 .175E-05 20 20 2 .244E-04 22 0 631E-04 22 0 4 -618E-05 22 0 12 .774E-04 22 2 16 .740E-04 22 0 20 100E-03 22 2 10 .786E-04 22 4 2.22E-04 22 4 .237E-04 22 4 .237E-04 22 4 .237E-04 22 10 1.65E-04 22 12 .237E-04
Writing full pale figures to Al Ell

入力極点図の再計算極点図が作成される。

🔤 コマンド プロンプト - newpopla	
HARMONIC ANALYSIS 0. Quit 1. Return to Page 1 Find harmonic coefficients .HCF, con 2. Cubic crystal system 3. Hexagonal, tetragonal or ortho 4. Compute SOD or COD from harmonic 5. Recalculate pole figures HPE	(popLA page 4) mpleted PFs (.FUL) for: orhombic crystal system coefficients (slow!)
 6. Inverse pole figures .HIP 7. List harmonic coefficients to scr Note: To convert Aachen-format Bunge Roe coeff.file .HCF: use AC2W Also need FAKTOR.CtW (J. Hirse 8. Establish coefficients for a give 9. Apply TRANSFORMATION to given coe Please type a number from 0 to 93 	reen or printer e coeffs. to Kallend's binary lmn (outside this menu) – ch) en TRANSFORMATION efficients
4.)で展開係数から ODF 図を作成	
2012/09/24 09:05 2009/09/25 13:39	2,129 AL.HCF 2,129 CNULL.HCF
Calculate ODF from Harmonic Co Program by John Kallend (c)	pefficients 1968 - 1988

What is the specimen name (.HCF Assumed)?

Al.HCF を指定

ENTER OUTPUT FORMAT REQUIRED

- COD sections every 10 degrees, ROE angles only
 SOD or COD every 5 degrees
 COD sections at low index orientations (ROE, 8 SECTIONS)

==> 2

Average values of Wlmn for different orders of l
1 Avg. Wlmn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Default = CALCULATE TO L = 22, OK ? Y
CALCULATIONS FINISHED
MAX. VALUE = 6.01 MIN. VALUE = 85
Choose output format:
1. as SOD (will be called .SHD)
2. as COD (will be called .CHD)
Enter 1 or 2 ==> 1
In output file, angles increase from 0 in nomenclature 1. Kocks 2. Roe/Matthies

of

3. Bunge

Inter 1,2, or 3 ==> 3

Enter 1,2, or 3 ==> 3 Making file Al .SHD 続行するには何かキーを押してください . . .

ODF は終了

5.6Harmonic法のODF図、再計算極点図を表示

🕌 popLATools 1.02X by CTR	user yamada HelperTex		
File Help			
Create RAW File for popLA TXT2 Format Datas(N)	PFtoODF2POPLA	RAW File , DFB File	
Display PF ODF of popLA PoleFigue ODF File	popLADatatoTXT2	Display	
Display ODF of popLA SHD, CHD, SOD, COS file	ODFDisplay	Display	
-ReCalc Polefigure File Export PoleFigure File	MakePoleFile	TXT2,TXT,ASC	

ほかのToolもWIMV同様適用できます。

6. 結晶方位の解析

6. 1 マウスクリックによる結晶方位図

● をマウスクリックすると、Euler角度と(hkl)[uvw]と結晶方位図を描画

🕌 TextDisplay 1.11S (C:¥CTR¥work¥	ODFDisplay¥0	DF.txt		
File Help					
Orientation	φ1	Φ	φ2	ODF	
(2 1 3)[-3 -6 4]	58.98	36.7	63.43	8.48	
(1 1 0)[0 0 1]	90.0	90.0	45.0	8.29	
(0 1 1)[1 0 0]	0.0	45.0	0.0	8.29	
(1 0 1)[0 -1 0]	0.0	45.0	90.0	8.29	
(0 0 1)[1 0 0]	0.0	0.0	0.0	5.83	
(0 1 0)[1 0 0]	0.0	90.0	0.0	5.83	
(0 1 0)[0 0 1]	90.0	90.0	0.0	5.83	
(0 0 1)[0 -1 0]	90.0	0.0	0.0	5.83	
(0 0 1)[0 -1 0]	0.0	0.0	90.0	5.83	
(1 0 0)[0 -1 0]	0.0	90.0	90.0	5.83	
(1 0 0)[0 0 1]	90.0	90.0	90.0	5.83	
(0 0 1)[-1 0 0]	90.0	0.0	90.0	5.83	
(0 1 3)[1 0 0]	0.0	18.43	0.0	5.08	
(0 3 1)[1 0 0]	0.0	71.57	0.0	5.08	
(3 1 0)[0 0 1]	90.0	90.0	71.57	5.08	
(1 3 0)[0 0 1]	90.0	90.0	18.43	5.08	
(1 0 3)[0 -1 0]	0.0	18.43	90.0	5.08	
(3 0 1)[0 -1 0]	0.0	71.57	90.0	5.08	
(1 1 0)[1 -1 2]	54.9	90.0	45.0	2.99	
(0 1 1)[2 -1 1]	35.26	45.0	0.0	2.99	
(1 0 1)[-1 -2 1]	35.26	45.0	90.0	2.99	
(2 3 1)[3 -4 6]	52.87	74.5	33.69	2.94	
(1 3 2)[6 -4 3]	27.03	57.69	18.43	2.78	
(1 2 1)[1 -1 1]	39.23	65.91	26.57	2.77	
(2 1 3)[-1 -4 2]	46.91	36.7	63.43	2.62	
(1 1 2)[-1 -1 1]	90.0	35.26	45.0	2.43	
(1 1 0)[1 -1 1]	35.26	90.0	45.0	2.43	
(0 1 1)[1 -1 1]	54.74	45.0	0.0	2.43	
(1 0 1)[-1 -1 1]	54.74	45.0	90.0	2.43	
(2 3 1)[1 -2 4]	64.93	74.5	33.69	2.35	
(1 3 2)[4 -2 1]	14.96	57.69	18.43	1.03	
(1 2 1)[1 -1 1] (2 1 3)[-1 -4 2] (1 1 2)[-1 -1 1] (1 1 0)[1 -1 1] (0 1 1)[1 -1 1] (1 0 1)[-1 -1 1] (2 3 1)[1 -2 4] (1 3 2)[4 -2 1]	39.23 46.91 90.0 35.26 54.74 54.74 64.93 14.96	65.91 36.7 35.26 90.0 45.0 45.0 74.5 57.69	26.57 63.43 45.0 45.0 0.0 90.0 33.69 18.43	2.77 2.62 2.43 2.43 2.43 2.43 2.35 1.03	

une

. .

MI-2022 No. 772

THERE

6.3 結晶方位のFamily化List作成

🕌 TextDisplay 1.11S C:¥(CTR¥work	∉ODFDisplay¥O	DF.txt		
File Help					
Orientation	φ1	Φ	φ2	ODF	
{1 1 0}<0 0 1> goss	90.0	90.0	45.0	8.37	
{1 3 2}<6 -4 3> S	27.03	57.69	18.43	8.03	
{0 0 1}<1 0 0> cube	0.0	0.0	0.0	5.77	
{0 1 3}<1 0 0>	0.0	18.43	0.0	4.95	
{1 1 0}<1 -1 2> brass	54.9	90.0	45.0	3.16	
{1 1 2}<-1 -1 1> copper	90.0	35.26	45.0	2.7	
{2 1 3}<-1 -4 2> R	46.91	36.7	63.43	2.68	
{1 1 0}<1 -1 1> P	35.26	90.0	45.0	2.43	

6.5 GPODFDisplay機能

ODF解析結果の解析はODFDisplay2ソフトウエアがありますが、本ソフトウエアは

 ${h k 1} < u v w > の決定機能と3D-F i b e r 機能があります。$

ODF図上をマウス左クリックで"+"を表示し、結晶方位の整数化で計算された Euler 位置を"O"表示

マウス右クリックで、 φ1=55, Φ=30, φ2=65 を通過する φ1, Φ, φ2 プロファイルを表示

7. Error評価

極点、ODFはブラックボックスではありません。

ODF解析結果の再計算極点図(.FUL or .WPF)と入力極点図(.RAW)の比較をすることで入力極点図の評価が出来ます(Rp%)。評価はValueODFVF ソフトウエアで行います。

M V	alueODFVF 2.09VFT[16/	/06/30] by CTR
File	Help Resolusion:5.0	EqualErea Sin(Alfa) TextDisplay
	LaboTex-TPF	
	RIGAKU-ODF	
	TexTools-POL	
	TexTools-RINTTXT	
	Standard ODF	
	popLA(Raw&Other)	
	NEWODF	
	PrintDisplay	
	Exit	

 $\alpha = 0$ は跼天図の中心

極点図の外側が下がり気味なので、defocus 補正が足りないことを表しています。

ODFPoleFigure2 ソフトウエアの Search minimum Rp%(Cubic only) で最小 Rp%モードで改善出来ます。

8. 逆極点図

popLAによるWIMV法とHERMONIC法の逆極点図描画

例は Titanum ですが、Cubic、Tetragonal,Orthorhombi,Hexagonal も計算可能

GPInverseDisplay 1.00T[16/06/30] by CTR
File Help
Material
Titanium.TXT a 1.0 b 1.0 c 1.5871 α 90.0 γ 120.0
ODF
LaboTex PopLA StnadredODF TexTools Other
Method Plane max index Direction max index
Direction Miller-Bravais Notation(4 Axis Nortation) 15 15
Inverse data select
S:\Version管理\DATA\Ti-InverseCheck\popLA\WIMV\TI.WIP
Inverse Display
Inverse max val 2D-3D 3D Max value Window size Display
50.7 2D ▼ 0.3 < 1.0 800 Full Inverse disp Inverse data
Peak data
✓ Disp Font size 10 ▼ Filename 20 ▼ Base 16 ▼ Level 25 Peak serach Inverse Disp

(SOP3:ND,SOP2:TD,SOP1:RD)

Ti-ND 方向の Direction

Ti-ND 方向の Plane

TI.WIP SOP3_Max=53.7

9. 再計算極点図の等高線表示

再計算極点図をTXT2に変換がおこなわれていれば、等高線表示も行えます。

