高分解能ODF図表示のための

GPODFDi splay

Ver.3.21

5度以外のODF図表示の基本機能を作成しました。

2025年05月01日

- 1. 概要
- 2. 機能
- 3. ソフトウエアの起動
- 4. ソフトウエア画面
- 5. 入力データ
 - 5. 1 LaboTexによるODF図のExport
 - 5. 2 TexToolsによるODFファイル
 - 5. 3 StandardODFによるODFファイル
 - 5. 4 NewODF (Bunge) によるODFファイル
 - 5.5 popLAによるODFファイル
 - 5. 6 DhmsBungeによるODFファイル
 - 5. 7 MTEXのExportファイル
 - 5. 8 VectorのExportファイル
 - 5.9 OIMデータの読み込み
 - 5. 10 ATEXOExportファイル
- 6. GPODFDisplayにデータ入力
 - 6.1 等高線レベル変更、Font変更、Grid、ODF図の平滑化
 - 6.2 1 画面変更
 - 6.3 画面の拡大、縮小
 - 6. 4 3 画面表示
 - 6.5 2画面、1画面表示を入力で実現
 - 6.6 マウスカーソル移動で、Euler角度とODF値表示
 - 6. 7 マウス右クリックで3D-Fiber表示
 - 6.8 Euler角度表示領域マウス左クリックでEuler角断面変更

7. {HKL}<UVW>の決定

- 7.1 ODF 図上をマウス左クリックで Euler 角度を固定
- 7.2 結晶系の変更
- 7.3 結晶方位図表示
- 7. 4 Hexagonalの例
 - 7.4.1 LaboTex
 - 7.4.2 TexTools
 - 7. 4. 3 NewODFのA-TypeからB-Type変換
 - 7. 4. 4 popLAのA-TypeからB-Type変換
 - 7. 4. 5 MTEX BType, AType別選択(Ver2.13)
- 8. CrystalOrentation(Ver2.03以降)との連動

8.1 使い方

- 9. Hexagonalの4指数<->3指数変換
- 10. 結晶方位の自動計算
- 11. CubicのFiber解析
- 12. CubicのDataBase位置の方位密度
- 13. Resolution変更とファイル出力
- 14 ODFvalulistのファイ化

14.1 データベースの入力モード

- 14.2 Hexagonalの3指数入力
- 14.3 Hexagonalの4指数入力
- 15. ODFデータの保存
- 16. MTEXØInport
- 17. φ2 断面のφ1-Φ軸に角度表示
- 18. Fiber計算にeuler角度入力
- 19. 方位密度計算をステップ 1.0deg のODFデータ補間から計算

19.1 euler角度から方位密度計算

- 20. Triclinic->Orthorhombic
- **21.** ODFデータの平滑化
- 22. MTEXデータの扱い
- 23. ODF值
 - 23.1 ピークサーチ法
 - 23.1.1 すべての方位
 - 23.1.2 等価方位の計算(最大値)
 - 23.1.3 基準方位優先方位(最大値)
 - 23.2 DataBase法
 - 23.2.1 すべての方位計算
 - 23.2.2 等価方位の最大方位密度の計算
 - 23.2.3 等価な方位の平均値
 - 23.2.4 規格化方位の平均値
 - 23.2.5 規格化方位の最大値
 - 23.2.6 直接入力
- 24. HexagonalのODF値
 - 24.1 ピークサーチ法
 - 24.2 方位入力法
- 25. OrthorhombicのODF値
 - 25.1 ピークサーチ法
 - 25.2 方位入力法
- 26. TetragonalのODF値
 - 26.1 ピークサーチ法
 - 26.2 方位入力法
- 27. ODF解析の最小値
 - 27.1 randomProfileの確認 (random成分の定量)
 - 27.2 最小値がマイナスの場合
 - 27.3 random領域の削除
- 28. γ -Fiberに関して (Ver 2. 32)
- 29. Euker角度から方位密度直接計算(Version3)
- 30. LaboTexJobODFファイルを直接読み込み平滑化と新しいJob作成
- 31. EBSDなどの離散データにGauss関数分散

31. BCC θ-Fiberに関して
32. BCC ε-Fiberに関して
33. {411} <148>/ {111} <112>に関して
34. random (BG) 定量
35. FWHMの計算

1. 概要

各種ODF解析結果からExportされたODF図を表示するソフトウエアは、 ODFDisplay ソフトウエアとして作成されてしているが、ODFDisplay ソフトウエアは5度間隔の ODF図を対象にしている。 最近、ODF解析では5度間隔より細かい間隔で測定し処理を行う事を望まれている為、 本ソフトウエアは、5度間隔より細かい解析結果表示と全結晶系のODF図表示を目的に作成した。

Cer3.00 から方位計算を euler 角度実数(real)から直接計算が行われています。

2. 機能

5 度間隔以下の解析結果の描画(1deg まで確認しています) Cubic, Tetragonal, Orthorombic, Hexagonalに対応 全画面表示と1画面、3画面、拡大、縮小、描画 入力ODF図はLaboTex, TexTools,StnadardODF, NewODF, popLA, DhmsBunge

- 3. ソフトウエアの起動
 - 1. C:\CTR\bin\GPDOFDisplay.jar をダブルクリック
 - 2. ODFPoleFigure2 ソフトウエアの Tookit から ODFAfterTools を選択し

ODFAfterTools(Ver.1.06以降)の GPODFDisplay を選択

ODFAfterTools 1.06XT[14/10,	/31] by CTR	- • ×
ODFExport file	ValueODF	in-out-Polefigure compare
LaboTex(POD) VolumeFraction file	ODFVFGraph	Circle graph disp
LaboTex(POD) Volume Fraction files	CompareVolumeFraction	Circles graph disp
LaboTex,TexTools,STD,popLA ODFExportFile	ODFDisplay	Contour & fcc bcc fiber disp
ODFFiber TXT ODFDisplay export files	FiberMultiDisplay	ODF fiber files dsiplay
LaboTex ODF export file	ODFEulerAngle	ODF maxF EulerAngle (hkl)[uvw]
ReCalc PoleFigure File Export PoleFigure file	MakePoleFile	TXT2,TXT,ASC
TXT2 PoleFigure-3D-Display	GPPoleDisplay	3D-PoleFigure-Display
InverseData ODFInverseData	ODFInverseChecker	3D-Inverse-Display
ODFExportFile LaboTex ODF Export files(T NT)	CompareODF	ODFDisplay2
LaboTex ODFExportFile	GPODFDisplay	Contour Disp
		2

5. 入力データ

5. 1 LaboTexによるODF図のExport (Hexa:AType, BType)

L Li	aboTex	- AL U	ser				-	-	_			
File) Edit	View	Calculation	Analysis	Modell	ing He	lp					
-	New S Open S Change	ample, Sample e/New	/Project e User			38 99	IL (C) (C))		₩ V	1	
	ODF E	xport			•	ODF Ex	kport (Phi 1	Section])			
	PF Exp	ort				ODF Ex	kport (Phi 2	2 Section	ı)			
	EPF/PF	F/COR	/POW/SOR E	xport		ODF E	kport (Phi 1,	, Phi 2, P	hi, Odf) B	lasic area	a	
	Print Print S	etup				ODF E	kport(Phi1,P	Phi2,Phi)	Full range	·		
	Crysta Recent	l Symr : Samp	netry Ile		F							
1	Exit						\bigcirc				a	3
	OD	F Ex	port (Phi	1, Phi 2	, Phi,	Odf)	Basic ar	rea		は		

Orthorombic では phi1 : 0->90 phi2 : 0->90 Phi : 0->90 Triclinic では phi1 : 0->360 phi2 : 0->90 Phi : 0->90

ODF Export(Phi1,Phi2,Phi) Full range ... は

phi1:0->360 phi2:0->360 Phi:0->180

データフォーマット

PH11	PH12	PHI	ODF↓
0.00	0.00	0.00	0.431056E+02↓
5.00	0.00	0.00	0.234728E+02↓
10.00	0.00	0.00	0.405838E+01↓
15.00	0.00	0.00	0.654249E+00↓
20.00	0.00	0.00	0.502098E+00↓
25.00	0.00	0.00	0.500293E+00↓
30.00	0.00	0.00	0.500293E+00↓
35.00	0.00	0.00	0.500293E+00↓
40.00	0.00	0.00	0.500293E+00↓
45.00	0.00	0.00	0.500293E+00↓

Orthorombicを扱う場合、格子定数の選択を LaboTex として下さい。

<i>1</i> 4			G	PODFDis	play 1.	43ST[19/03	/30]	by CTR		
File	Titaniu	m Vie	w SM=10(3)	Search 7.	0,7,fals	e Help	Fiber	ODF	DataBase	e Res	olution
	30	DDF									
	AI		-								
	He	#	Materi	alData 1.	- 5	×					
	C	File	Help Disp								
		٦	Search								
			Orthorhom	bic							~
		6	✓ LaboText	(a<=b<=c ∝<	=90 <i>j</i> 8<=	90 γ<=9	0)				
			Wave length								
			1.54056	~							
			Select								
			Polyethyler	ne.TXT							~
			00-053-185	59							
			Polyethyler	ne							
			Formula: (C2 H4)n							
			Di	sp		Cancel			Return S	tructure	9

5. 2 TexToolsによるODFファイル (Hexa:AType)

🐲 ODF Calculation Setup	
Crystal info. Crystal system Cubic	Pole figure info. Number of pole figures 3
a 1 α 90	1st PF 2nd PF 3rd PF
b 1 β 90	Browse PF file location
с <u>1</u> у 90	T.¥新しいソフトウエアを考える場合¥Stepを細かくした
✓ Normalizing pole figures before ODF calculation	Resolution: 2.50
With Orthogonal sample symmetry	Assuming fiber texture
Save as 「える場合¥Stepを細かくした場合¥Step-2	2.5deg-Asymmetry¥TexTools¥2.5-asymc.HODF
OK Advance	Help Cancel

ODF解析時、saveファイルを指定しています。

このファイルが GPODFDisplay ソフトウエアの入力データです。

lext Format of UUF File (Arbitrary Resolution) IHXNP232H (by ResMat)↓ 145 37 37↓ 3↓ 1.00 1.00 1.00 90.00 90.00 90.00↓ 3↓ T:¥新しいソフトウエアを考える場合¥Stepを細かくした場合¥Step-2.5deg-Asymmetry ¥TexTools¥111.HPF↓ T:¥新しいソフトウエアを考える場合¥Stepを細かくした場合¥Step-2.5deg-Asymmetry ¥TexTools¥textools22001.pol↓ T:¥新しいソフトウエアを考える場合¥Stepを細かくした場合¥Step-2.5deg-Asymmetry ¥TexTools¥textools2202.pol↓ 1 1 2 0 0 ↓ 2 0 0 ↓ 2 0 0 ↓ 2 0 0 ↓ 2 0 0 ↓ 2 3 3↓ 3.0100 0.1172↓ 3.00 52.1859 43.1931 24.2037 9.1032 2.7473 1.0502 0.6556 0.5529 0.5453 0.5793 3.6734 0.7274 0.7378 0.7533 0.7834 0.8151 0.8180 0.7881 0.7182 0.6166 3.5587 0.5470 0.5419 0.5283 0.5214 0.5261 0.5352 0.5568 0.5890 0.6218

Hexagonal はATYpeで解析されている

LaboTexとTexToolsでは入力極点図データの回転方向が異なります。

LaboTexのTDは右側、TexToolsnoTDは左側表示になっています。 ODFをTriclinicで解析した場合、TDの位置によってODF図が異なります。 LaboTex ϕ 2=0

5. 3 StandardODFによるODFファイル

StandardODF はフォートランで計算したバイナリファイルが ODF15 に出力される。 このデータをテキストデータに変換して読み込んでいます。 テキストデータに変換したデータは、ODF15 と同一ホルダに作られます。

PHI	PHII	UDF↓
0.0	0.0	4.920816421508789↓
0.0	5.0	4.186793327331543↓
0.0	10.0	2.5929224491119385↓
0.0	15.0	1.2084969282150269↓
0.0	20.0	0.4713497459888458↓
0.0	25.0	0.18503795564174652↓
0.0	30.0	0.0875125378370285↓
0.0	35.0	0.03342802822589874↓
0.0	40.0	-0.04017699137330055↓
0.0	45.0	-0.08348061144351959↓
0.0	50.0	-0.040176890790462494
0.0	55.0	0.0334278903901577↓
0.0	60.0	0.08751237392425537↓
0.0	65.0	0.18503804504871368↓
0.0	70.0	0.4713500142097473↓
0.0	75.0	1.2084969282150269↓
0.0	80.0	2.5929219722747803↓
0.0	85.0	4.186792850494385↓
0.0	90.0	4.920816421508789↓
5.0	0.0	4.69765043258667↓
5.0	5.0	3.994871139526367↓
	PHI 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	PHI PHII 0.0 0.0 0.0 5.0 0.0 10.0 0.0 15.0 0.0 20.0 0.0 25.0 0.0 30.0 0.0 35.0 0.0 40.0 0.0 50.0 0.0 55.0 0.0 60.0 0.0 65.0 0.0 70.0 0.0 75.0 0.0 80.0 0.0 90.0 5.0 0.0

5.4 NewODF (Bunge) によるODFファイル テキストデータであるが、データの並びが異なるデータの場合 ;†1 F †2 Value↓ ↓ 0.00 0.00 0.00 33.01138↓ 0.00 0.00 5.00 21.02114↓ 0.00 0.00 10.00 5.77750↓ 0.00 0.00 15.00 1.28711↓ 0.00 0.00 20.00 0.83810↓ 0.00 0.00 25.00 0.82219↓ 0.00 0.00 35.00 0.82200↓ 0.00 0.00 35.00 0.82200↓ 0.00 0.00 40.00 0.82200↓ 0.00 0.00 45.00 0.82200↓ 0.00 0.00 55.00 0.82200↓

0.00 0.00 60.00 0.822001

このフォーマットはStandardODFのテキストデータと一致していて、

Euler角度の順序が異なります。

非対称極点図の場合データはCCW方向で、LaboTexと異なり、TexToolsと 一致します。

よって、NewODFでは、内部的にファイル名 ODF15.TXT ファイルを禁止しています。 HCP は B-Type と思われる(2016/04/29)

5. 5 popLAによるODFファイル (Hexa:AType)

popLAソフトウエアはDosベースで動作します。

32bitベースのWindowsのDos画面で操作すれば、ODFファイルが作成出来ます。 popLAで作成される ODF データ

popla UIZ_Iabotex-rp_Z.IX UUF computed by harmonics 4-FEB-**↓ SHDB 5.0 90.0 5.0 60.0 1 1 2-1 3 100 phil= 0.0↓ 471 264 445 256 1 500 743 500 264 471 Ο Û Û Ω Ω 256 445 441 659 441 268 331 193 193 331 42 110 31 151 88 142 48 207 Û Û 102 281 Û Û Û 61 138 93 411 557 411 Ō 250 191 129 282 129 191 401 320 225 432 303 98 420 266 1 390 895148117411481 895 390 225 320 401 Ō Ō 98 168 643124715221247 643 168 98 303 432 12 454105113281051 454 -12 266 420 Ω Û Û Û

 \downarrow

5. 6 DhmsBungeによるODFファイル

Ē]様に	、 D ł	nm s	Вu	nge	で作	成され	ιδO	DF	データ	7					
x C	XXX.A OMMEN	SC↓ T:BLA	NK↓													
L	MAX	23L	FMAX	19	HDM I	DN ID	Ι	4	1	1↓ 10		рцт	21			
	435	452 610	5.0 413 5791	0.0 384	469	5.0 583	574	478	5.0 436	470	511	569	2↓ 717	884	887	744
	530	605 425	691	781	867	756	425	180	161	268	548	978	1177	946	601	437
	414	430 384 520	402↓ 469	583	574	478	436	470	511	569	717	884	887	744	646	610
	549 691	530 781	605↓ 867	756	425	180	161	268	548	978	1177	946	601	437	414	435
¥	278	260	252	221	274	379	386	330	321	338	363	456	595	690	734	745
	338 201	492 444 257	- 341↓ - 566	695	792	708	421	154	99	262	564	838	864	634	394	296
	301 375 519	357 354	402↓ 451	598	655	616	542	457	372	368	569	888	971	695	424	427
	564	583	522↓ 563	480	326	205	151	144	346	790	1076	940	656	492	377	278
¥	74	23	83	166	200	211	255	303	282	219	198	237	323	446	548	550
	44Z 78	200 213	92↓ 344	434	547	578	399	162	104	236	421	516	415	206	107	140
	149	120	220	385	456	451	400	230	56	136	457	740	777	570	307	229
1	341 357	419 346	364↓ 265	178	179	184	93	25	162	462	696	730	616	439	238	74

5. 7 MTEXのExportファイル

```
>> plot(odf,'Sections',18)
progress: 100%
>> export(odf,'GOSSEXPORT')
progress: 100%
```

User¥???¥document¥MATLAB¥GOSSEXPORT ファイル

% MTEX ODF↓	
% crystal symmetry: ″432″↓	
% specimen symmetry: "1"↓	
%phi1 Phi phi2 value↓	
0.00000 0.00000 0.00000 0.00016↓	
5.00000 0.00000 0.00000 0.000094	
10.00000 0.00000 0.00000 0.00002↓	
15.00000 0.00000 0.00000 0.00000↓	
20.00000 0.00000 0.00000 0.000004,	
25.00000 0.00000 0.00000 0.00000↓	GPODFDisplay 1.63ST[19/09/30] by CTR -
30.00000 0.00000 0.00000 0.00000	LaboTex ODF Export (PHI1 PHI2 PHI ODF)(Hexa:AorB)
35.00000 0.00000 0.00000 0.00000↓	TexTools ODF Export (Hexa:A-Type)
40.00000 0.00000 0.00000 0.00001	StandardODF (ODF15,ODF15.bin)
45.00000 0.00000 0.00000 0.00001	NewODF(f1 F f2 Value)
50.00000 0.00000 0.00000 0.00001	popLA (Hexa: AType)
55.00000 0.00000 0.00000 0.00000	DhmsBunge (*.EOD)
	MTEX(f1 F f2 Value)
	MTEX(Inclinic (1/4) to Orthornombic) (Hexa BType) to Other
	EBSD-OIM(f1 E f2 Value) (Hexa & Type) to (nexa & Type) (Hexa & Type) to (nexa & Type)
75.00000 0.00000 0.00000 0.00000	EBSD-OIM(Triclinic to Orthorhombic) (Hexa Atype) to (Hexa BType)

Export されるデータの最後

24626 345.00000 90.00000 85.00000 0.68716↓ 24627 350.00000 90.00000 85.00000 7.82256↓ 24628 355.00000 90.00000 85.00000 37.05859↓ 24629 FEDET

φ1=360のデータとφ2=90のデータは出力されていない
 特に1/4対称データの Export の場合φ1=90のデータは問題

MTEXで orthorhombic で計算

Hexagonalに対して、MTEXは通常 B·Typeで動作するが、 MTEX5.1.1のunimodal()ではA-TYpeで動作している。 この為、以下の追加を行った。

<u>84</u>	GPODFDisplay 1.63ST[19/09/30] by CTR -			×	
File	Titaniun View Search 7.0,7, fal: Help Fiber ODF DataBase	Re	solu	itioi	
	LaboTex ODF Export (PHI1 PHI2 PHI ODF)(Hexa:AorB)	۲			
	TexTools ODF Export (Hexa:A-Type)	۲			
	StandardODF (ODF15,ODF15.bin)				
	NewODF(f1 F f2 Value)	۲			
	popLA (Hexa: AType)	۲			
	DhmsBunge (*.EOD)				
	MTEX(f1 F f2 Value)				
	MTEX(Triclinic(1/4) to Orthorhombic)	•		(Hex	a BType) or Other
	MTEX(Triclinic to Orthorhombic)			(Hex	a BType) to (Hexa ATyype)
	EBSD-OIM(f1 F f2 Value)			(Hex	a AType) unimodal()
	EBSD-OIM(Triclinic to Orthorhombic)			(Hex	a Atype) to (Hexa BType)

unimodal () でCraeteしたODF図をExportした場合の ODF図読み込みを行う。

unimodal () でeuler (0, 0, 0)のODF図作成

(0,0,0,1)[2,-1,-1,0]f1=0.0,F=0.0,f2=0.0 ODF=1024.93

5. 8 Vector法のExportファイル

読み込むデータは

** MODIFIED ROE TYPE EXPRESSION ** AVERAGED SYMMETRICAL TYPE

	1	3	6	10	15	21	28	36	35	34	33	32	31	30	29	22	16	11	7	4	2	1
22118 180 175 165 160 155 150 145 140 135 130	16.0 13.4 5.1 4.0 3.2 3.4 3.2 2.8 2.8 2.8	6.9 6.9 3.0 1.6 1.0 1.2 1.0 0.9 1.3 0.9	$\begin{array}{c} 0.6\\ 0.9\\ 1.6\\ 0.3\\ 0.2\\ 0.2\\ 0.1\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ \end{array}$	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	$\begin{array}{c} 0.2\\ 0.2\\ 0.3\\ 0.3\\ 0.3\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2$	0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2	$\begin{array}{c} 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2 \end{array}$	$\begin{array}{c} 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2$	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.5 0.7 0.3	$\begin{array}{c} 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.6\\ 0.3\\ 0.4\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3$	$\begin{array}{c} 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\$	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	2.0 1.2 0.6 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.8	2.8 3.1 2.0 1.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.8 1.2	4.1 4.2 3.4 0.9 0.8 0.3 0.3 0.3 0.3 0.4 0.5 1.4	5.7 5.4 2.3 1.4 1.3 0.9 0.6 1.1	5.5 4.7 2.8 1.2 0.5 0.5 0.5 0.5 0.8		8.4 7.8 5.0 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2	12.2 11.0 7.2 4.4 1.7 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	216.0 013.4 2 8.4 5.1 5 4.0 3.2 3.4 5 3.2 5 2.8 5 2.8 5 2.8
SIGMA	1.0		Sam	ple	name:																	
	1		2	3	2	ļ	5	6		7	8	8	9	10	11	1	2	13	14		15	16
018 517 1014 1510 205 30 35 40 55 55 60	8.1831 7.0781 4.0281 0.211 7.008 5.044 4.062 3.582 3.330 3.243 3.324 3.563 4.016	15.48 14.55 11.95 8.75 6.06 4.38 3.48 3.00 2.76 2.68 2.73 2.90 3.26	013. 910. 910. 1 7. 5 3. 3 2. 2 2. 2 2. 2 2. 3	0911 3771 508 326 933 151 731 515 439 484 657 027	2.205 9.446 6.997 4.936 3.594 2.836 2.399 2.152 2.055 2.061 2.153 2.398	510.3 5 9.7 6 8.0 7 6.0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	08 7 78 7 95 5 76 4 35 2 93 1 65 1 661 1 60 2	.259 .011 .942 .656 .570 .790 .277 .965 .809 .757 .762 .856 .101	$\begin{array}{c} 8.95 \\ 8.41 \\ 6.97 \\ 5.22 \\ 3.74 \\ 2.76 \\ 2.17 \\ 1.63 \\ 1.59 \\ 1.67 \\ 1.81 \end{array}$	9 7. 3 4. 3 4. 3 2. 7 1. 8 6 2. 1 1. 8 6 7 1. 1 1. 1 1. 3 1.	627 218 049 682 576 809 272 899 679 585 574 626 755	5.261 5.120 4.479 3.703 3.035 2.490 2.063 1.739 1.548 1.475 1.450 1.484 1.605	12.9 3.09 2.93 2.93 2.93 1.93 1.43 1.33	968 6 983 6 936 5 934 3 934 3 934 3 934 3 934 1 974 1 972 1 935 1 935 1 935 1 935 1	.672 .265 .182 .808 .808 .141 .758 .577 .530 .590 .722 .867 .974	5.71 5.39 4.52 3.57 2.84 2.34 1.72 1.59 1.57 1.61 1.68 1.74	2 3. 3 3. 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1	959 828 926 552 923 651 474 409 395 403 403	2.158 2.222 2.186 2.108 1.990 1.828 1.625 1.411 1.262 1.197 1.169 1.162 1.189	1.0 1.1 1.3 1.3 1.4 1.3 1.2 1.1 1.0 1.0 0.9 1.0 1.0	47 5 85 9 95 0 40 5 40 2 47 5 94 2 94 2 51 2	5.353 5.005 4.112 3.044 2.233 1.765 1.529 1.534 1.534 1.534 1.734 2.014 2.286 2.446

横軸(22)と縦軸(37)の比率が悪い(横軸が短い)ため、横軸を3倍とした。 等高線は22で描画、マウス位置強度は直線近似で計算

5.9 OIMデータの表示

# ODF↓	
# Resolution [degrees]: 5.00000 5.00000 5.00000↓ # Bunge Euler Angles: phi1. PHI. phi2. ODF value	
0.00000 0.00000 0.000000 0.244994↓	
0.00000 0.00000 5.00000 0.3828024	
0.00000 0.00000 25.00000 4.318754	
0.00000 0.00000 30.00000 3.20023↓	
0.00000 0.00000 35.00000 1.81008↓	
0.00000 0.00000 40.00000 0.925/61↓	
U.UUUUUU U.UUUUUU 45.UUUUUU U.b8U586↓ 0.00000 0.00000 50.00000 0.005501	
0.00000 0.00000 65.00000 4.318754	
0.00000 0.00000 70.00000 4.12943↓	
0.00000 0.00000 75.00000 2.71176↓	
0.00000 0.00000 85.00000 0.41224/↓	
	OIM/f1 E f2 Value)
0.00000 0.00000 105.00000 2.57674	
0.00000 0.00000 110.00000 4.05092↓	OIM(Trclinic to Orthorhombic)
0.00000 0.00000 115.00000 4.31875↓	, , ,

Triclinic あるいは Orthorhmbic として読み込む。

5.10 ATEXデータ

Phil Phi	Phi2	†(g)	†(g)dg ≭	(10 * Nb_Phil	*	Nb_Phi	ж	Nb_Phi2)↓
0.00	0.00	0.00	3.590	0.150↓				
0.00	0.00	5.00	3.396	0.284↓				
0.00	0.00	10.00	3.124	0.261↓				
0.00	0.00	15.00	2.399	0.201↓				
0.00	0.00	20.00	1.137	0.095↓				
0.00	0.00	25.00	-0.083	0.000↓				
0.00	0.00	30.00	-0.837	0.000↓				
0.00	0.00	35.00	-1.105	0.000↓				
0.00	0.00	40.00	-0.949	0.000↓				
0.00	0.00	45.00	-0.650	0.000↓				
0.00	0.00	50.00	-0.649	0.000↓				
0.00	0.00	55.00	-0.919	0.000↓				
0.00	0.00	60.00	-1.036	0.0001				
0.00	0.00	65.00	-0.867	0.0001				
0.00	0.00	70.00	-0.389	0.0001				
0.00	0.00	75.00	0.691	0.0584				
0.00	0.00	80.00	2.243	0.1884				
0.00	Ŏ.ŎŎ	85.00	3.372	0.2821				
0.00	Ŏ.ŎŎ	<u>90.00</u>	3.590	0.1501				
0.00	5.00	0.00	3.568	1.1921				
0.00	5.00	5.00	3.559	2.378				
ŏ.ŏŏ	5.00	10.00	3.080	2.058				
ňňň	5.00	15.00	2 090	1 3971				
ň ňň	5.00	20.00	ñ 820	0.5481				
0.00	0.00	20.00	0.020	0.040*				

6. GPODFDisplayにデータ入力

LaboTex の Hexagonal 場合、Export した ODF 図により Type を選択

Hexagonal 以外は(Hexa: Atype)or Other を選択

Save は、平滑化処理後のファイルを作成,LaboTex と同じフォーマット(f1,f2,F,ODF) TXT データの選択を行う。

で Export されたデータを選択

φ1が0->360、Φが0->180、φが0->360でStepが5度と表示される。

6.1 等高線レベル変更

_ D X	
¥3,354,44 ¥4,5 54,5 51,0 51,0 40,0 44,0 44,0 44,0 44,0 44,0 44,0 44,0 44,0 44,0 44,0 44,0 44,0 44,0 44,0 33,0 34,0 35,0 32,0 32,0 32,0 32,0 32,0 32,0 32,0 32,0 <th></th>	
Bung 2 Section 380 9 1 9 1 9 2 9 1 80 2 1 80 2 1 80 2 9	

この部分を左マウスで1回クリック、ダブルクリックでは入力画面が2つ表示される。

<u> </u>	contourLevelChange	×
	ODF contourlevel ODF Max: 54.54 Step: 1.0 Contour number: 54	
	ChangeStart 0.0 Step 1.0 Change number	
	FixmaxIntens. 10	
	The step doubling mode(1,2,4,8,16,)	
	Input contour mode Editing	
	☑ AXis disp	
	DrawLineswidth(double)	
	OK Cancel	

ChangeStart & 1.0, Step & 2.0 \heartsuit t

ž	contourLevelChange	×				
	ODF contourlevel					
	ChangeStart 0.0 Step 2 Change number: 27					
	☐ FixmaxIntens. 10					
	The step doubling mode(1,2,4,8,16,)					
	Input contour mode Editing					
	✓ AXis disp					
	DrawLineswidth(double)					

等高線表示は、画面サイズと等高線本数により、自動的にFontサイズの変更が行われます。 等高線レベルと色を何時も同じ表示にする場合

<u> </u>	contourLevelChange						
	DF contourlevel						
	ODF Max: 60.0 Step: 2.0 Contour number: 30						
	ChangeStart 1.0 Step 2.0 Change number						
	Exmaxintens. 60						
	The step doubling mode(1,2,4,8,16,)						
	Input contour mode Editing						
☑ AXis disp							
	DrawLineswidth(double)						
_	OK Cancel						

最大値54に対し60で固定すると 表示されない55,57,59の 等高線部も表示

等高線表示レベル 1, 2, 4, 8, 16とする場合

🖌 contourLevelChange 🗙				
ODF contourlevel ODF Max: 54.54 Step: 1.0 Contour number: 54				
ChangeStart 0.0 Step 1.0 Change number				
FixmaxIntens. 10				
The step doubling mode(1,2,4,8,16,)				
Input contour mode Editing				
DrawLineswidth(double)				
OK Cancel				

線幅の変更

🔏 contourLevelChange 💌				
ODF contourlevel				
ODF Max: 60.0 Step: 1.0 Contour number: 60				
ChangeStart 1.0 Step 1.0 Change number				
Fixmaxintens. 10				
✓ The step doubling mode(1,2,4,8,16,)				
Input contour mode Editing				
AXIS disp				
DrawLineswidth(double)				
2				
OK Cancel				

線幅1から2に変更

線幅1から線幅2に変更例

等高線色変更と等高線間隔の調整

<u>M</u>	contourLevelC	hange	×		
ODE Max: 54 54 Step: 1.0 Contour number: 54					
	·				
ChangeStart	0.0 Step 2	Change number	er: 27		
	10				
The step dou	bling mode(1,2,4,8,16	5,)			
	mode	Editing			
		Luting			
DrawLineswidth(double	e)(a)				
	1				
	ОК	ancel			
<u>%</u>	Contour Color	selector Ver.1.00		- 🗆 🗙	
File Help Color Value	Value	Value	Value		
2.0	22.0	42.0	62.0		
4.0	24.0	44.0	64.0		
6.0	26.0	46.0	66.0		
8.0	28.0	48.0	68.0		
10.0	30.0	50.0	70.0		
12.0	32.0	52.0	72.0		
14.0	34.0	54.0	74.0		
16.0	36.0	56.0	76.0		
18.0	38.0	58.0	78.0		
20.0	40.0	60.0	80.0		
Set White	Set White	set White		set White	
Input file holder			name		
C:¥CTR¥work¥GPODFI	Display		color00		
2 Set	ОК	Cancel			

色選択でWhiteにすると等高線が表示されない、密度手入力変更が可能

色選択

サンプル色から選択する。

6.1.1 Font変更

表示文字Fontが小さい場合、DisplayのFontサイズで変更して下さい。

6.1.2 Grid

等高線図上にスケール線配置が可能です。 0を選択するとスケール線は描画されません。

6.1.3 ODF図の平滑化

ODF図等高線を見て、平滑化が必要な場合、以下の方法を選択する。

ODFの平滑化のCycleとWeight数を選択する。
 数字が0は平滑化は行われない、数字が小さいほど、平滑化は大きくなります。
 平滑化は平滑点のデータにWeight数の重みを与えて周辺データとの移動平均を
 Cycle繰り返します。

$C: \texttt{¥CTR}\texttt{¥DATA}\texttt{¥GPODFD} is play \texttt{¥Step5} BCCG \text{-} sym. TXT ~ \vec{\mathcal{T}} - \mathcal{P}(\text{LaboTex})$

Cycle=1 Weight=0

File A	A-Iron	View SM=1(1)	Search 7.0,7,false	Help	Fiber	ODF	DataBase

Cycle=1 Weight=12

Weight=0 は、平滑化なし、 Weight が 0 以外では小さいほど平滑化される。 Cycle が大きいほど平滑化される。

6.2 1 画面変更

ODF 図上を中央ボタンクリックで表示が切り換えられる。当初ダブルクリックであったが変更

再度中央ボタンクリックで全表示に切り替わります。 間隔が1.0などの場合、切り替えに時間がかかります。

6.3 画面の拡大、縮小

6.4 3画面表示

File	AluminumDISP	View Help
fi	30DF	\GPODFDisplay\S
	ALLODF	
-	Cubic	ういたい 3 ODF を選

表示する φ 2 角度を入力する。数字入力と e n t e r K e y で入力が完了です。

🛃 to3ODF		×
30DF Euler Angle	30	50
ОК	Cancel	

OKで3画面が表示されます。

画面の縦横調整で、横配置も実現出来ます。

- φ2角度が表示されています。
- 2 画面、1 画面表示を入力で実現 6.5

M to30DF	-	-	X
30DF φ2Ar	ge		
0	30		30.0
	ОК	Cancel	

同じ φ 2 角度を入力すると、同一画面は表示されません。

6.6 マウスカーソル移動で、Euler角度とODF値表示

マウスカーソルを動かすと、カーソル位置の Euler 角度と ODF 値を表示する。

6. 7 マウス右クリックで3D-Fiber表示

Cubic-BCCの代表的なFiber

θ-fiber η-fiber	ф2=5	φ2=10	φ2 = 15
ζ -fiber $\varphi_2 = 0$			
φ2=20	φ2= 25	φ2= 30	φ2= 35
φ2=40	$\phi 2 = 45$ α -fiber ϵ -fiber γ -fiber	φ2=50	φ2=55
φ2= 60	φ2= 65	φ2=70	φ2= 75
φ2=80	φ2=85	φ2=90	0 90 [►] ∳1 ¢2-0-90 Å-5.00 90 ♥Φ

Cubic-FCCの代表的なFiber

_				
	φ2=0 α-fiber	φ2=5	φ2=10	φ2=15
	φ2= 20	φ2 <i>=</i> 25	φ2=30	φ2= 35
1	φ2=40	φ2=45	φ2=50	¢2=55
	φ2= 60	φ2= 65	ф2=70	φ2=75
	φ2= 80	φ2= 85	φ2= 90	0 90 ♥1 \$20-90 \$45.00 90 \$4 \$4 \$4 \$4 \$5 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6

この表示は ODFDisplay2 ソフトウエアで実現しています。

 $3D-FiberではBCCの\phi2断面45度を例で説明します。$

本ソフトウエアではφ1、Φ、φ2方向を同一画面に表示します。

{*φ*1、*Φ*、*φ*2}= {0, 55, 45} を右クリックでEuler角度3方向のプロファイル表示を 実現しています。

 ϕ 1 : γ-Fiber Φ : α-Fiber ϕ 2: {0, 55, 0} から {0, 55, 90} のプロファイル

6.8 Euler角度表示領域マウス左クリックでEuler角断面変更

Euler角度表示領域をマウス左右クリックでEuler角断面変更出来ます・。

切り替えと同時にODF図も変わります。

Roe 表示

Bunge(ϕ 1、 Φ 、 ϕ 2)とRoe(Ψ 、 Θ 、 Φ)では以下の関係があります。 $\Psi = \phi 1 - 9 0$ $\Theta = \Phi$ $\Phi = 9 0 - \phi 2$

φ2断面表示

Roe Φ断面

Φ断面

Ŗ

ų

Q

ξ

Max=17.88

17.0

16.0 15.0 14.0 13.0 12.0 11.0

10.0 9.0

Roe¢section ♥ 90 |`

οl

0

Ф=0->90 step=5.0

_0 90

Min=0.0

R o e Φ断面(Ψ逆方向)

7. {HKL}<UVW>の決定

7.1 ODF 図上をマウス左クリックで Euler 角度を固定

ODF 図上をマウス左クリックで、ODF 図上に黒の+が表示され、再計算された位置に紫の円を描く 再計算された断面は断面ステップの関係上、表示している断面と一致しない場合、計算された角度に 最も近い断面に紫、次の断面に灰色の円を描く。

画面の下部に Euler 角度、正確な(hkl)[uvw]が表示され、矢印の後に

整数化(hkl)[uvw]と再計算 Euler 角度が表示される

φ1=28.3 Φ=53.4 φ2=45.0 ODF=12.2 (0.57,0.57,0.6)[0.42,-0.82,0.38] ---> (1,1,1)[1,-2,1] φ1=30.0 Φ=54.74 φ2=45.0

ODF 図上に黒の+が表示されていると、ODF 図上をマウス移動しても表示は固定されています。 固定は同一画面上を再度マウスクリックする事解除されます。

Hexagonalの扱い

Hexagonalでは各種表現方法があり、

詳しくはHexaConvetソフトウエアを参考にして下さい。

本ソフトウエアでは、

Bunge表示

4 A x i s N o t a t i o n (Miller-Bravais Notation)

直交軸([10-10],[-12-10],[0001])

に限定していましたが、

直行軸は、A-Type, B-Type選択で変わります。

3指数<->4指数の変更は CrestalOrientation で変更できます。

7.2 結晶系の変更

Cubicから他の結晶系(Teoragonal, Orthoromibic, Hexagonal)への変更は

Marerialソフトウエアから変更します。

Hexagonalの Magnesium が選択されています。

7.3 結晶方位図表示

{HKL}<UVW>の決定後、結晶方位表示位置をマウスクリック

φ1=89.2 Φ=35.0 φ2=45.0 ODF=27.6 (0.41,0.41,0.82)[-0.57,-0.59,0.57] ---> (1,1,2)[-1,-1,1] φ1=90.0 Φ=35.26 φ2=45.0

結晶方位を画面 title に表示、(112)を青い面、[-1-12]を矢印で表現しています。

7. 4 Hexagonalの例

結晶系の変更 Cubic から Hexagonal の Ti を選択

7.4.1 LaboTex

注意:LaboTexではX軸をAType[100]、BType[210]で解析出来るためExport時 ファイル名+Typeとすると便利でです。

M GPODFDisplay 1.03T[15/03/31] by CTR				
File AluminumDISP	View Help			
30DF	MaterialData 1.33XT[15/03/31] by CTR			
ALLODF	File Help Disp			
Cubic	Search			
	- Hexagonal			
	LaboTex Trigonal(to Rhombohederal)			
	Wave length			
	1.54056 •			
	Select			
	alpha_hcp-Ti.TXT			
	8837 KE040141() alpha_hcp Formula: Ti			
	Uisp Gancel Return Structure			

GPODFDisplay 1.03T[15/03/31] by CTR

File alpha_hcp-TiDISP View Help

Ti を表示している。

データを選択

方位密度の高い位置をマウス左クリック

結晶方位表示位置をマウスクリックで、結晶方位図を表示します。

7.4.2 TexTools

解析はX軸をAType[100]で行われます。

ファイル選択時、表示するX軸Typeで選択してください。

	M GPODFDisplay 1.06T[15/03/31] by CTR	
	File TitaniumDISP View Help	
l	LaboTex ODF Export (PHI1 PHI2 PHI ODF) •	
1	TexTools ODF Export	(Hexa: A Type) or Other
	StandardODF (ODF15)	(Hexa: ATpe) to (Hexa :Btype)
	NewODF(f1 F f2 Value)	
	рорLA (Неха: АТуре)	
-	DhmsBunge (*.EOD)	
ŝ	Exit	

A t y p e で選択

BTypeで選択

7. 4. 3 NewODFのA-TypeからB-Type変換

NewODF(f1 F f2 ∀alue)	(Hexa A Type) or Other
popLA (Hexa: AType)	(Hexa A Type) to (Hexa B Type)
DhmsBunge (* EOD)	

7. 4. 4 popLAのA-TypeからB-Type変換

popLA (Hexa: AType)	(Hexa A Type) or Other
DhmsBunge (*.EOD)	(Hexa A Type) to (Hexa B Type)
Evit	

7. 4. 5 MTEX BType, AType別選択(Ver2.13)

HexagonalにてMTEXでXRDデータ入力の場合、BTypeで表示される。 EBSDデータをMTEXで解析を行うと、ATypeで表示される。 コマンドで変換が出来るかもしれませんが、ODFのExportデータを選択時 BTypeとATypeから選択を行う。

GPODFDisplay(V2) 2.13T[20/12/31] by CTR					
File	Dolomite View Search 7.0,7,false Help Fiber ODF	DataBas	e Resolution		
	LaboTex ODF Export (PHI1 PHI2 PHI ODF)(Hexa:AorB)	>			
	LaboTex(Triclinic->Orthorombic)				
	TexTools ODF Export (Hexa:A-Type)	>			
	StandardODF (ODF15,ODF15.bin)				
	NewODF(f1 F f2 Value)	>			
	popLA (Hexa: AType)	>			
	DhmsBunge (*.EOD)				
	MTEX(f1 F f2 Value)	> (Hexa BType) or Oth	er	
	MTEX(Triclinic(1/4cut) to Orthorhombic)	> F	lexa AType(EBSDE)	(port)	
	MTEX(Triclinic to Orthorhombic(Average))	>			

MTEX(f1 F f2 Value)	>	
MTEX(Triclinic(1/4cut) to Orthorhombic)	>	
MTEX(Triclinic to Orthorhombic(Average))	2	(Hexa BType) or Other
EBSD-OIM(f1 F f2 Value)		Hexa AType(EBSDExport)

上記サポートにより以下の機能は中止する

MTEX(f1 F f2 Value)	>	
MTEX(Triclinic(1/4cut) to Orthorhombic)	>	
MTEX(Triclinic to Orthorhombic(Average))	>	

- - 8.1使い方

CrystalOrientation メニューを選択

{hkl} <uvw>或いはRuler角度を入力してCalcで計算を行い Dispで結晶方位図を表示し、Return Structureとする。

		A-Iron-Meas	sure-IntegralData	adisp
	1.0 1.0 1.0	90.0 90.0 9	0.0	
Miller Indices —				
(hkl)[uvw]	1 →]1 →]2	▼ -1	▼]-1 ▼]1	▼ Calc
Euler Angle				
(p1 P p2) <=9	0.090.0	35.2644	45.0	Calc
Euler Angle 90 - Double Miller	0 35.2644 45.0			
0.4	082 0.4082 0.81	65 -0.5774 ·	-0.5774 0.5774	
DISP				\frown
	10 •	Disp size	400 -	DISP
Position		-		

Labotexの場合、Tetragonal, Orthorombicは、Labotexを 指定してください。

9. Hexagonalの3指数<->4指数変換

Titanium の非対称 ODF の B-Type、4 指数表示を3 指数に変換する

指数表示を解除し CrystalOrientation を選択

Material を Titanium を選択し、Euler 角度を入力し、Calc を行う

HexaConvert 1.08YT[16/06/30] by CTR	
File Step Help	
A 🗆 X-Axis[100] ([2-1-10]) 🗼 B 🗵 X-Axis[210] ([10-10])	_
MIller Notation (3Axis Notation)	uvw
Miller Bravais Notation(4 Axis Notation)	UVXW
Euler(p1Fp2)	
Titanium.TXT	
c/a 1.587 ψ2 0 - Calc	
[DISP	
Position10Image: Disp size200Image: Disp sizeBG CorrBlackImage: Line size1.0Image: Million	ISP NUS
OK Return Structure	

A HexaConvert 1.08YT[16/06/30] by CTR
File Step Help
A □ X-Axis[100] ([2-1-10])
MIller Notation (3Axis Notation)
Miller Bravais Notation(4 Axis Notation) Image: 0 million 1 million Image: 0 million 1 million Image: 0 million 1 million
Euler(p1Fp2) 50.31 61.38 30.0
Material select Titanium.TXT
c/a 1.587 ψ2 0 → Calc
DISP
Position10Disp size200DISPBG CorrBlackLine size1.0MINUS
OK Return Structure

DISP、Return Structure を行う。

結晶方位画面が表示-->ODF 画面上に、結晶方位情報が表示されます。

10. 結晶方位の自動計算

結晶方位計算は、指定された結晶方位より大きい密度位置に対し ピーク位置を探し、euler角度計算を行い、 同一結晶方位を削除して行われます。

GPODFDisplay(V2) 2.16T[20/12/31] by CTR							
File Aluminum View	Search 7.0,7,false Help Fiber ODF	Da					
	SearchValue	>					
	MaxIndex	>					
	Search						
- 100	Special Search						
	EqualDirection True(MaxIntens)						
\$	ResultDisp						

結晶方位指定

最大結晶方位に対して、1/3から1/50の値を指定します。

最大指数の指定

計算の開始

16T[20/12/31] by CTR

Searchにより結果が表示される。SpecialSearchはstepの半分内の標準方位を優先します。 計算結果

赤い〇で表示

計算結果の表示

Sea	rch 7.0,7,false Help	Fib
	SearchValue	>
]	MaxIndex	>
	Search	
	Special Search	
	EqualDirection True	
	ResultDisp	

結晶方位から再計算した Euler 角度

実測定データの場合、多数の結晶方位が計算されるが、多重数1を削除する

	Sea	rch 7.0,7,true	Help	Fibe
		SearchValue		>
5		MaxIndex		>
		Search		1
1		Special Searc	h	
		EqualDirectio	n Fals	e
		ResultDisp		

11. CubicのFiber解析

ODF図上の特定位置の2Dプロファイルを表示する。 FCCの β -Fiberは3Dプロファイルを表示する。 11.1 BCC-Fiber

各FiberのODF図上位置

θ-fiber η-fiber	φ2=5	±2=10	42=15	
ζ-fiber φ2= 0	4 2 0	ψ2 = 10	ψ2 - 13	
φ2=20	φ2= 25	ф2= 30	φ2= 35	
φ2=40	$\phi 2 = 45$ α -fiber ϵ -fiber γ -fiber	φ2=50	φ2= 55	
φ2= 60	φ2= 65	φ2=70	φ2=75	
φ2= 80	ф2 = 85	φ2=90	0 90 ∳1 ¢2=0-90 A = 5.00 90 Φ	

11.2 FCC-Fiber

各FiberのODF図上位置

12. CubicのDataBase位置の方位密度(Ver3.09で(90,*,45)list作成)

DataBaseに登録されている方位の方位密度を算出する。

又、近傍のより方位密度の大きい値を算出する事も指定できます。

Data:measure_Data¥2020-11-13-BSC(SM5(0))

12.1 DataBaseの指定

ODF	DataBase	
	Disp	

			- 🗆 X
☑ {0 0 1}<1 0 0> cube		✓ {1 1 2}<-1 -1 1> copper	☑ {0 1 1 }<1 0 0> Goss
☑ {0 0 1}<1 -1 0> RW(or H)	☑ {1 1 0}<1 -1 1> P	√ {1 1 1}<-1 -1 2>	☑ {0 1 1 }<2 -5 5>
✓ {5 2 5}<1 -5 1>	☑ {0 1 3}<1 0 0>	☑ {1 2 2}<2 -2 1>	☑ {1 1 3}<1 -1 0>
☑ {1 1 2}<1 -1 0>	☑ {2 3 3}<0 -1 1>	☑ {1 1 1}<0 -1 1>	☑ {2 1 3}<-1 -4 2> R
☑ {2 1 3}<-3 -6 4> S	☑ {1 1 4}<-1 -7 2>	☑ {4 4 11}<-11 -11 8> Taylor	☑ {0 0 1}<2 -1 0> CH
☑ {0 1 2}<1 0 0> Q1	☑ {1 1 3}<-3 -3 2> Q2	☑ {3 6 2}<8 -5 3> Q3	☑ {0 1 1}<5 -2 2> L
☑ {1 0 0}<0 1 3>CR	☑ {4 -1 -1}<1 -4 8>	☑ {5 4 5}<2 -5 2>	☑ {2 2 3}<3 -6 2>
☑ {2 2 5}<-5 -5 4>			
	to not select	OK Cancel	

normではマイナス方位は0としています。

計算する結晶方位にチェックを行う。

12.2 近傍の計算指定(Ver 2.17で中止) GPODFDisplay(V2) 2.17T[20/12/31] by CTR _ × ODF±5 DataBase Resolution Aluminul View Search 7.0,7,fa Help Fibe ODF DataBas Resolutic to ODF±1ste ODF menber list ۲ ۲ 8 0 ODF family list(familyMax) ODF all family list -۰. ۹ ODF all family normalize list

> {hkl}<uvw>Input mode {hktl}<uvtw>Input mode

 12.3
 全ての方位を計算

40

45

50

12.4 等価方位を纏めて計算(最大)

1.0 以上のすべての方位

等価な方位の平均値

Orientation	φ1	Φ	φ2	ODF
(1 1 2)[-1 -1 1]	90.0	35.26	45.0	89.42
(1 0 1)[-1 -2 1]	35.26	45.0	90.0	88.97
(1 1 0)[1 -1 2]	54.9	90.0	45.0	88.97
(0 1 1)[2 -1 1]	35.26	45.0	0.0	88.97
(1 2 1)[1 -1 1]	39.23	65.91	26.57	81.46
(1 1 0)[-2 2 -5]	60.5	90.0	45.0	44.94
(0 1 1)[5 -2 2]	29.5	45.0	0.0	44.92
(1 0 1)[-2 -5 2]	29.5	45.0	90.0	44.92
(2 3 1)[3 -4 6]	52.87	74.5	33.69	27.04
(2 1 3)[-3 -6 4]	58.98	36.7	63.43	27.01
(1 3 2)[6 -4 3]	27.03	57.69	18.43	26.15
(4 11 4)[11 -8 11]	41.65	71.13	19.98	20.19
(1 3 1)[3 -2 3]	42.13	72.45	18.43	20.19
(4 4 11)[-11 -11 8]	90.0	27.21	45.0	6.56
(1 1 3)[-3 -3 2]	90.0	25.24	45.0	6.56
(1 2 2)[2 -2 1]	26.57	48.19	26.57	2.74
(1 3 2)[4 -2 1]	14.96	57.69	18.43	1.41
1				

1. 0以上の等価方位の最大値

MaxOrientation	φ1	Φ	φ2	ODF
{1 1 2}<-1 -1 1> copper	90.0	35.26	45.0	89.42
{1 0 1}<-1 -2 1> Brass	35.26	45.0	90.0	88.97
{0 1 1}<5 -2 2> L	29.5	45.0	0.0	44.94
{1 3 2}<6 -4 3> S	27.03	57.69	18.43	27.04
{4 4 11}<-11 -11 8> Taylor	90.0	27.21	45.0	20.19
{1 1 3}<-3 -3 2> Q2	90.0	25.24	45.0	20.19
{1 2 2}<2 -2 1>	26.57	48.19	26.57	2.74
{1 3 2}<4 -2 1> R	14.96	57.69	18.43	1.41

等価な方位を規格化

ODF DataBase Resolutior RandomsearchOF to ODE+1sten :89.42 0.01 r ODF DataBase Resolutior RandomsearchOF ODF menber list 88.0 86.0 to ODF±1step -89.42 0.01 > 86.0 > 84.0 82.0 > 80.0 > 78.0 76.0 ODF family list(familyMax) ODF menber list 88.0 86.0 84.0 82.0 80.0 78.0 76.0 ODF all family list ODF family list(familyMax) hkluvwmakefile AverageRandomlevel ODF all family normalize list ODF all family list hkluvwfiledisp MaxRandomlevel {hkl}<uvw>Input mode ODF all family normalize list hkluvwmakefile AverageRandomlevel 62.0 60.0 58.0 56.0 {hktl}<uvtw>Input mode hkluvwfiledisp {hkl}<uvw>Input mode MaxRandomlevel

平均値の規格化(27.04+27.01+26.15)/3*2=53.46

最大値の規格化 27.04*2=54.08

内部計算値と表示値は異なります

12.5 ODF±STEPの考えかた(中止しています)

12.000		1 1 1 · · ·	3721472	()		• / /					
Orientation	φ1	Φ	φ2	ODF	φ1	Φ	φ2	ODF	nφ1	nΦ	nφ2
{0 1 1}<1 0 0> Goss	0.0	45.0	0.0	54.54	0.0	45.0	0.0	54.54			
{1 0 1}<-1 -2 1> Brass	35.26	45.0	90.0	54.44	35.26	45.0	90.0	54.44			
{0 0 1}<1 0 0> cube	0.0	0.0	0.0	43.11	29.5	45.0	0.0	27.74	35.0	45.0	0.0
{0 1 1}<5 -2 2> L	29.5	45.0	0.0	27.74	0.0	0.0	0.0	43.11			
{1 1 2}<-1 -1 1> copper	90.0	35.26	45.0	27.6	90.0	35.26	45.0	27.6			
{1 1 3}<-3 -3 2> Q2	90.0	25.24	45.0	2.73	90.0	25.24	45.0	2.73	90.0	30.0	45.0
MAXODF=54.54	MINIODF=	=0.5 (Weight=0) Cycle=5)		MINIODF:	=0.5 (Weight=0) Cycle=5)				

本来の結晶方位角度位置から計算した方位密度は左の青色BOX

ODF±STEPで計算した方位密度は右の赤色BOX

結晶方位 Euler角度の Euler角度 (27.03, 57.69, 18.43)から

ステップ間隔上の位置(25,60,20)とし

- φ 1 20, 25, 30
- Φ 55, 60, 65
- φ 2 15, 20, 25
- の上の最大密度を計算する。

従来の最大値を求める範囲

新しい最大値を求める範囲

13. Resolutionの変更とファイル出力

ODF図の分解能を変更する。

分解能を変更したODF図が表示されます。

13.6 ShitcopperOsort

AllFamilyモードでは (90, *, 45) がsortされる。

14 ODFValuelistのファイ化

同一極点処理結果から各種ODF解析を行っても結果が異なるが、ODF図では比較し難い。 hkluvwの方位密度の数値化を行うこと容易に比較出来ます。

各種方位密度の値を c s v ファイルとして比較できるようにしました。

Cubic 限定です。外は、手入力モードをご使用下さい。

Vector法を除くODF図の場合はODF全体で計算するが

Vector bc (CDF) 「方位の場合、 μ - ζ 図を1面表示することでODF 方位密度の計算を行います。

ファイル(E) 編集(E) 書式(Q) {001}<100>,14.02 {101}<-1-21>,0.0 {112}<-1-11>,0.0 {011}<100>,0.31 {001}<1-10>,0.77 {110}<1-11>,0.0 {111}<-1-12>,0.0 {111}<-1-12>,0.0 {111}<-1-12>,0.0 {111}<-1-12>,0.0 {111}<-1-12>,0.0 {111}<-1-12>,0.0 {111}<-1-12>,0.0 {111}<-1-12>,0.0 {111} {255} {122} {100>,5.75 {122}<2-21>,0.0 {113}<1-10>,0.0 {113}<1-10>,0.0 {112}<1-10>,0.0 {113}<1-10>,0.0 {123}<-1-42>,0.01 {132}<6-43>,0.01 {114}<-1-72>,5.07 {4411}<-11-118>,0.0 {001}<2-10>,3.12 {012}<100>,1.69 {113}<-3-32>,0.0 {362}<8-53>,0.47 {011}<5-22>,0.0
<pre>{001}<100>,14.02 {101}<-1-21>,0.0 {112}<-1-11>,0.0 {011}<100>,0.31 {001}<1-10>,0.77 {110}<1-11>,0.0 {111}<-1-12>,0.0 {011}<2-55>,0.1 {525}<1-51>,0.01 {013}<100>,5.75 {122}<2-21>,0.0 {113}<1-10>,0.0 {112}<1-10>,0.0 {112}<1-10>,0.0 {233}<0-11>,0.0 {111}<0-11>,0.0 {213}<-1-42>,0.01 {132}<6-43>,0.01 {114}<-1-72>,5.07 {4411}<-11-118>,0.0 {001}<2-10>,3.12 {012}<100>,1.69 {113}<-3-32>,0.0 {362}<8-53>,0.47 {011}<5-22>,0.0</pre>
Loll' 1 EE. 90.0

ODF 図は多重性により結晶方位により方位密度が異なります。

DataBaseの結晶方位ではVolumeFractuionが同一でも以下で示すような方位密度を示します。 この倍率を考慮する計算は

ODF all family normalize list

hkluvwmakefile の動作

多重性を考慮した計算では、バックグランドを削除して計算されます。

バックグランド(ランダムレベル)計算に使用する方位の最小密度が適用さてます。

(2 1 1)[0 -1 1]	50.77	65.91	63.43	0.6
(1 1 3)[1 -1 0]	0.0	25.24	45.0	0.59
(3 1 1)[0 -1 1]	47.87	72.45	71.57	0.59
(2 3 3)[0 -1 1]	66.91	50.24	33.69	0.59
(3 3 2)[1 -1 0]	0.0	64.76	45.0	0.59
(1 1 1)[0 -1 1]	60.0	54.74	45.0	0.59
(1 1 1)[1 -1 0]	0.0	54.74	45.0	0.59
MAXODF=64.1	MINIODF:	=0.59	(Weight=0	Cycle=1)

ODF all family list	hkluvwmakefile	モードが左、	ODF all family normalize list	が右
<pre>{hkl}<uvw>,mt ex {001}<100>,24.46 {101}<-1-21>,14.51 {112}<-1-11>,6.3 {011}<100>,27.56 {001}<1-10>,1.16 {110}<1-11>,1.66 {111}<-1-12>,0.61 {011}<2-55>,1.52 {525}<1-51>,0.76 {013}<100>,0.83 {122}<2-21>,0.64 {113}<1-10>,0.59 {112}<1-10>,0.6 {233}<0-11>,0.59 {111}<0-11>,0.59 {111}<0-11>,0.59 {113}<-1-42>,0.61 {132}<6-43>,0.69 {114}<-1-72>,0.64 {012}<100>,0.8 {113}<-3-32>,1.83 {362}<8-53>,0.62 {011}<5-22>,9.21</uvw></pre>	$\begin{array}{l} & \operatorname{horm}\{hkl\} < uvw >, mt ex \\ \{001\} < 100 >, 12.525 \\ \{101\} < -1-21 >, 14.51 \\ \{112\} < -1-11 >, 6.3 \\ \{011\} < 100 >, 14.075 \\ \{001\} < 1-10 >, 0.875 \\ \{110\} < 1-11 >, 1.65999999 \\ \{111\} < -1-12 >, 0.61 \\ \{011\} < 2-55 >, 1.52 \\ \{525\} < 1-51 >, 0.76 \\ \{013\} < 100 >, 0.83 \\ \{122\} < 2-21 >, 0.6900000 \\ \{113\} < 1-10 >, 0.59 \\ \{112\} < 1-10 >, 0.6 \\ \{233\} < 0-11 >, 0.59 \\ \{111\} < 0-11 >, 0.59 \\ \{113\} < -1-42 >, 0.63 \\ \{132\} < 6-43 >, 0.7899999 \\ \{114\} < -1-72 >, 0.690000 \\ \{012\} < 100 >, 0.8 \\ \{113\} < -3-32 >, 1.83 \\ \{362\} < 8-53 >, 0.65 \\ \{011\} < 5-22 >, 9.21 \\ \end{array}$	9 0 9 0		

例えば、

 $\{001\}<100>(24.46\cdot0.59)*1/2+0.59=12.525$ $\{101\}<-1\cdot21>(14.51\cdot0.59)*2/2+0.59=14.51$ $\{132\}<6\cdot43>(0.69\cdot0.59)*4/2+0.59=0.79$

ただし、計算する方位がすべてランダムレベル以上に絞った場合、計算結果は誤りです。

本来、ODF図の最小値がランダムレベルですが、Hermonicの場合、最小値がランダムレベル 以下を示します。この対策のため、計算する方位の最小値を採用しています。

14.1 データベースの入力モード3指数

Vector 法を除く **ODF** に対応、**Cubic**,**Tetragonal**,**Orthorhombic**,**Hexagonal**3 指数対応 {h k 1} < u v w > テーブルを入力し、方位密度の計算を行う。

😼 GPODFDisplay 1.42ST[19/03/30] by CTR		
File A-Iron-Measure-IntegralData View Search 7.0,7,false Help Fiber C	ODF DataBase Resolution	
filename: C/\ODF\ODF15	to ODF±1step	
	ODF menber list	
	ODF family list	
	ODF all family list	1
	{hki} <uvw>Input mode Inp</uvw>	out table
	5.0 Inp	out list 🍡 🎽

🗊 INPUTTABLE.TXT - メモ帳
ファイル(E) 編集(E) 書式(Q) 表示(V)
0 0 1 1 0 0 1 1 1 -1-1 2

ミラー指数を**スペースで区切り**入力する。 Euler 角度が 0->90 以内に入力する。

入力終了でファイル作成(上書)終了

📕 INP UT	TABLE.T	TX - 3+	帳	
ファイル(E)	編集(E)	書式(())	表示⊙	へル
新規(<u>N</u>)		Ctrl+N		
開(⊙)		Ctrl+O		
上書き保	存(<u>S</u>)	Ctrl+S		
名前を付け	けて保存(名	Ŋ		
ページ設定	宦(U)			
印刷(<u>P</u>)	_	Ctrl+P		
メモ帳の約	\$7∞			

再度 t a b l e の確認で Euler 角度が追加されています。

○ INPUTTABLE.TXT - メモ帳
 ファイル(E) 編集(E) 書式(Q) 表示(V) ヘルプ(H)
 0 0 1 1 0 0 0.0 0.0 0.0
 1 1 1 -1 -1 2 90.0 54.7356 45.0

方位密度計算

マウスカーソルは4指数対応ですが、Inputmodeは3指数対応です。

L a b o T e x の Export したODF図はAType で、Euler 角度(0,31.4,0)は{01-13}<2-1-10>で 3指数では、{013}<100>である。

<u>86</u>	GPODFDisplay 1.43ST[19/03/30] by CTR							
File	Titanium Atype View Search 7.0,7, false Help Fiber	ODF	DataBase Resolution					
file	ename: U:測定データロ材料-Ti/2018-07-15-3hkluvw/Ti-3hkluvw.TXT		to ODF±1step		May-240.07			
2	. 		ODF menber list	h	Min=0.1			
			ODF family list		240.0			
			ODF all family list		220.0 200.0 180.0			
		8	{hkl} <uvw>Input mode</uvw>		Input table			
			{hktl} <uvtw>Input mode</uvtw>		Input list			

で以下を入力し、

ファイル	(F)	編集(E)	書
$\begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}$	$\begin{smallmatrix}1&1\\1&1\\3&1\end{smallmatrix}$	-1 0 0 0 0 0	

を入力後saveし、再度開くと、Euler角度が計算されています

ファイル(F)	編集(E)	書式(O)	表示(V)
$\begin{smallmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 3 & 1 \end{smallmatrix}$	-1 0 0 0 0 0.0 0 0 0.0	.0 0.0 3 0 0.0 0 0 31.42	30.0 .0 0.0

方位計算は

t a b 1 e には複数入力が可能で、材料別に管理される場合は、メモ帳の1 o a d、 s a v e 機能を使って下さい。

t a b l e の実態ファイルは

C:\CTR\work\GPODFDisplay\INPUTTABLE.TXT ファイルです。

登録が不良の場合,Input table に表示できなく事があります。ファイルを削除してください。 3指数<->4指数 指数<->euler角度 Atype<->Btypeの確認は HexaConvertソフトウエアをご利用下さい。

14.3 Hexagonalの4指数入力

Vector 法を除く ODF に対応、Hexagonal 4 指数対応

 ${h k t 1} < u v t w > テーブルを入力し、方位密度の計算を行う。$

4指数で結晶方位を複数入力する

アテイル(F) 編集(E) 書式(O)
 0 0 0 1 1 -1 0 0
 0 0 0 1 2 -1 -1 0
 ファイルをsaveし、再度読み込むと
 アテイル(F) 編集(E) 書式(O) 表示(V) へルブ(H)
 0 0 0 1 1 -1 0 0 0.0 0.0 30.0
 0 1 -1 3 2 -1 -1 0 0.0 31.42 0.0
 0 0 0 1 2 -1 -1 0 0.0 0.0 0.0
 e u l e r 角度計算結果も表示される。

方位密度計算は

ファイル(F)	編集(E)	書式(O)	表示(V)
hkluvw, {0001}< {01-13} {0001}<	labotex 1-100>,; <2-1-10; 2-1-10>	246.95 >,240.04 ,249.97	4

ファイルの実体は

C:¥CTR¥work¥GPODFDisplay¥INPUTTABLEHEXA.TXTファイルです。 登録が不良の場合,Input table に表示できなく事があります。ファイルを削除してください。

ODF all family list,{hkl}<uvw>mode,{hktl}<uvtw>で作成されるファイルイは

hkluvwlistDisplay ソフトウエアにより、複数のサンプル間で集計し数値的に比較出来ます。 或いは、Excelに渡し、グラフ表示で比較できます。

印刷も可能になります。

15. ODFデータの保存

入力されたデータを平滑化などの加工後、以下の Format で保存します。

LaboTexFormat		Standra	dODF	'Format	OIMF	ormat	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \text{ODF} \downarrow & \text{P} \\ -0, 41657331595884094 \downarrow 0 \\ -0, 01664380542933941 \downarrow 0 \\ 1.135297417640686 \downarrow & 0 \\ 2.981170892715454 \downarrow & 0 \\ 4.9847636222839355 \downarrow & 0 \\ 5.678861141204834 \downarrow & 0 \\ 4.162786483764648 \downarrow & 0 \\ 1.6847549676895142 \downarrow & 0 \\ 0.1028570681810379 \downarrow & 0 \\ 0.1028570681810379 \downarrow & 0 \\ 0.1028595059394836 \downarrow & 0 \\ 1.6847530603408813 \downarrow & 0 \\ 4.162785053253174 \downarrow & 0 \\ 5.678861141204834 \downarrow & 0 \\ 4.98476505279541 \downarrow & 0 \\ 2.9811720848083496 \downarrow & 0 \\ 1.1352980673614502 \downarrow & 0 \\ -0.0166422557085749 \downarrow & 0 \\ -0.016642351506371498 \downarrow & 0 \\ 1.35297417640686 \downarrow & 0 \\ 2.981170892715454 \downarrow & 0 \\ 1.35297417640686 \downarrow & 0 \\ 2.981170892715454 \downarrow & 0 \\ \end{array}$	$\begin{array}{ccccc} H12 & PHI \\ 0.0 & 0.0 \\ 0.0 & 5.0 \\ 0.0 & 5$	PH11 0.0 5.0 10.0 15.0 20.0 30.0 40.0 45.0 55.0 60.0 65.0 65.0 65.0 65.0 80.0 75.0 85.0 90.0 5.0 10.0	$\begin{array}{c} 00\text{F} \downarrow & \text{PHT1} \\ -0.416573315858840944.0.0 \\ -0.01664380542933941 \downarrow 0.0 \\ 1.35297417640686 \downarrow 0.0 \\ 2.981170892715454 \downarrow 0.0 \\ 4.9847636222839355 \downarrow 0.0 \\ 5.6788611412048344 & 0.0 \\ 4.162786483764648 \downarrow 0.0 \\ 1.6847549676895142 \downarrow 0.0 \\ 0.1028570681810379 \downarrow 0.0 \\ 0.1028550559394836 \downarrow 0.0 \\ 0.1028550553934836 \downarrow 0.0 \\ 1.6847530603408813 \downarrow 0.0 \\ 4.98476505279541 \downarrow 0.0 \\ 4.98476605279541 \downarrow 0.0 \\ 4.98476605279541 \downarrow 0.0 \\ 4.98476605279541 \downarrow 0.0 \\ 4.98476505279541 \downarrow 0.0 \\ 4.98476505279541 \downarrow 0.0 \\ -0.31648683746528625 0.0 \\ -0.416573077440261844 0.0 \\ -0.3364863746528625 0.0 \\ -0.3364863746528625 0.0 \\ 0.30262559652328494 0.0 \\ 1.339056491851807 \downarrow 0.0 \\ \end{array}$	PHI 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} F\downarrow \\ 1.416573315858840941 \\ 1.0166438315063714984 \\ 13529729843139654 \\ 9811706542968754 \\ 98476362228393554 \\ 6788611412048344 \\ 1627864837646484 \\ 1627864837646484 \\ 1627864837646484 \\ 10285682652008064 \\ 1.301451265811920174 \\ 102856324745178224 \\ 68475258350372314 \\ 1627845764160164 \\ 678806643676764 \\ 9847640991210944 \\ 98117160797119144 \\ 13529920578002934 \\ 1.33864458746526254 \\ 0.33864457456254745 \\ 185292678052934 \\ 1.33864457456254544 \\ 0.33864457456254544 \\ 0.33864457456254544 \\ 0.33864457456254544 \\ 0.33864457456254544 \\ 0.33864458745626254 \\ 0.33864457455256254196174 \\ 1.33864456745626254 \\ 0.33864458745546254 \\ 0.33864458745546254 \\ 0.338643874554254338655474 \\ 1.33864456932475424488809347154 \\ 1.3354260921478274 \\ \end{array}$

LaboTexFormatは再度LaboTexODFデータとして読み込めますが

StandardODFFormatデータは読み込めません。

16. MTEXØInport

MTEX(f1 F f2 Value)		Triclinicで使用
MTEX(Triclinic(1/4) to Orthorhombic)	(Hexa BType) or Other	<u>Orthorombic</u> で使用
MTEX(Triclinic to Orthorhombic)	(Hexa BType) to (Hexa ATyype)	使用しない

17. φ2 断面のφ1-Φ軸に角度表示

Soft-index.html の DOC/Snipping/Windows10-Snnipping.pdf を参考

18. Fiber計算にeuler角度入力

固定したFiber以外にeuler角度の手入力を実現した。(Ver1.64以降) Input euler angle の場合、ODFをステップ 1.0 度に変えて計算

Fiber	ODF	DataBase	Resolution	
\$	Smooth	ning-ON		
I	BCC			>
I	-cc			>
1	nput e	uler angle(d	ehnge to step 1degree)	

内部的にはODFステップ 5deg のデータに対し、ステップ間隔を 2.5deg,2deg,1deg を可能にしている

3軸の範囲が広い軸の基本ステップから他の軸のステップ間隔を計算

Fiber の値は ODF ステップ 1.0deg から計算され、選択された euler 角度軸で表示

ただし、 φ1 で表示した場合、 φ1 角度が並び替えられ(90->35 が 35->90)表示される。

F i b e r 表示と同時にF i b e r ホルダにF i b e r ファイルが作成される 複数のデータ比較はF i b e r Mu l t i D i s p l a y で表示

<u>#</u>	FiberMultiDisplay 1.03ST[19/10/31] by CTR			- 🗆 🗙
File Help				
	C¥CTR¥DATA¥Aluminum-H-O¥Aluminum-H¥LaboTex¥CW¥FIBER¥(90.0,35.0,45.0)(35.0,45.0,90.0).TXT	Dispselect	DispTytle	NO 1
~		◯ Dispselect	DispTytle	NO 2
~		⊖ Dispselect	DispTytle	NO 3
*		◯ Dispselect	DispTytle	NO 4
~		⊖ Dispselect	DispTytle	NO 5
~		⊖ Dispselect	DispTytle	NO 6
Main Tytle	Input-euler-angle			Display

	Version2.0以降
<u>84</u>	GPODFDisplay 2.00FCCST[19/10/31] by CTR -
File	Titanium View Search 7.0,7,false Help Fiber ODF DataBase Resolution
	LaboTex ODF Export (PHI1 PHI2 PHI ODF)(Hexa:AorB) >
	TexTools ODF Export (Hexa:A-Type)
	StandardODF (ODF15,ODF15.bin)
	NewODF(f1 F f2 Value)
	popLA (Hexa: AType)
	DhmsBunge (*.EOD)
	MTEX(f1 F f2 Value)
	MTEX(Triclinic(1/4) to Orthorhombic)
	MTEX(Triclinic to Orthorhombic)
	EBSD-OIM(f1 F f2 Value)
	EBSD-OIM(Triclinic to Orthorhombic)
	Vector
	ATEX(Triclinic)
	ATEX(Triclinicv(1/4) to Orthorhombic)
	Save >
	TmpfileDisp
	to Version1
	Exit
19/07	/31

Version2.0 以降のFCC- β -FiberとODP方位密度計算はODFデータをステップ1.0degから 計算、ただし、 ± 1 stepの場合はVersion1とVersion2は同一 起動時は、Version2モードであるが、Version1モードに切り替え可能

Version1 表示

GPODFDisplay(V1) 2.01FCCST[19/10/31] by CTR

Version2 表示

GPODFDisplay(V2) 2.01FCCST[19/10/31] by CTR

Step5deg 計算

90 1/1

ODFソフトウエアによっては、Orthorhombicデータが得難い場合、 TriclinicからOrthorhombic変換を行います。 対応ODFソフトウエアは

GPODFDisplay(V2) 2.11T[20/11/30] by CTR	
File Aluminum View Search 7.0,7,false Help Fiber OD	DF DataBase Re
LaboTex ODF Export (PHI1 PHI2 PHI ODF)(Hexa:Ao	rB
LaboTex(Triclinic->Orthorombic)	
TexTools ODF Export (Hexa:A-Type)	>
StandardODF (ODF15,ODF15.bin)	
NewODF(f1 F f2 Value)	>
popLA (Hexa: AType)	>
DhmsBunge (*.EOD)	
MTEX(f1 F f2 Value)	
MTEX(Triclinic(1/4cut) to Orthorhombic)	>
MTEX(Triclinic to Orthorhombic(Average))	
EBSD-OIM(f1 F f2 Value)	
EBSD-OIM(Triclinic to Orthorhombic)	
Vector	>
ATEX(Triclinic)	>
ATEX(Triclinicv(1/4) to Orthorhombic)	>
Save	>
TmpfileDisp	
to Version1	
Exit	

Orthorhombic化をおこなった場合、等高線部分をマウスクリックし確認してください。

21. ODFデータの平滑化

WeightとCycleを使って平滑化を行っています。 どちらかが '0'の場合、平滑化は行われません。

22. MTEXデータの扱い

XRDデータを解析する場合、通常はTriclinicで計算を行うが、スクリプトを SS = specimenSymmetry('orthorhombic')

に書き換えて実行するとOrthorhombicのODF図が計算されます。

しかし、Exportすると、phi1=90度のデータが出力されません。

Exportして本ソフトウエアをご利用する場合、TriclinicでExportしてください。

Triclinic->Orthorhombicは

ファイルを読み込みと同時に変換

<u>#</u>	GPODEDisplay(V2) 2.151[20/12/31] by CTR							
File	Aluminum View Search 7.0,7,false Help Fiber ODF	Data	Base	Resolution				
	LaboTex ODF Export (PHI1 PHI2 PHI ODF)(Hexa:AorB)	>						
	LaboTex(Triclinic->Orthorombic)							
	TexTools ODF Export (Hexa:A-Type)	>						
	StandardODF (ODF15,ODF15.bin)							
	NewODF(f1 F f2 Value)	>						
	popLA (Hexa: AType)	>						
	DhmsBunge (*.EOD)							
	MTEX(f1 F f2 Value)	>						
	MTEX(Triclinic(1/4cut) to Orthorhombic)	>						
	MTEX(Triclinic to Orthorhombic(Average))	>	(He	xa BType) or Other				
	EBSD-OIM(f1 F f2 Value)		Hex	a AType(A partt of EBSDExport data)				

あるいは読み込み後Orthorhombic化が行えます。

GPODFDisplay(V2) 2.15T[20/12/31] by CTR

File	Alum	inum	View	Search	7.0,7,false	Help	Fiber	ODF	DataBas	e F
	:	30DF	:							
		ALLO	DF					2		0
		ALLO	DF+A	xisDisp				2		č
		Cubic						8	100	
	(Crysta	alOrie	ntation					0	
		Triclin	iic->O	rthorho	mbic(Cut1/4	4)			92 0	
	·	Triclin	iic->O	rthporh	ombic(Aver	age)				¢
					W	9		8	2 30	

23. ODF 值

方位密度を調べる方法は2種類あります。

ピークサーチから計算する方法と、BataBaseに登録されている位置の方位密度を計算する法

DataBase法

ODF all family normalize list >	hkluvwmakefile	AverageRandomlevel
{hkl} <uvw>Input mode</uvw>	hkluvwfiledisp	Average
{hktl} <uvtw>Input mode</uvtw>	16.0 15_0	MaxRandomlevel
		Max

規格化を行う場合、backgorund を削除します。2021/08/10 機能追加 Randomlevel は、peak±0.3 平均値、他は最小方位密度
23.1 ピークサーチ法

SM=5(9) Search 7.0,7,false Help Fiber ODF D

ピークサーチの最小密度指定 指数付け最大指数 ピークサーチの実行 ピークサーチ結果に DataBase によるチェック 等価方位 c h e c k

Search 7.0,7,false

結果表示

EqualDirection は等価方位の扱いを指定する。

EqualDirection True(MaxIntens) をクリックすると、 Search 7.0,7,true に変わり 等価な反射の最大値を表示する。

23.1.1 すべての方位

_

Search	n 3.0,7,fals	se を表示	Search	で表示				
		- 12/J ·						
f1	F	f2	ODF	calcf1	calcF	calcf2	hkluvw EqualDire	ction
0.0	26.04	0.0	4.6	0.0	26.57	0.0	(0 1 2)[1 0 0] 1	
0.0	66.39	4.78	6.0	0.0	66.44	4.76	(4 48 21)[12 -1 0]	1
0.0	65.19	90.0	5.5	0.0	63.43	90.0	(2 0 1)[0 -1 0]	1
0.0	90.0	19.38	9.0	0.0	90.0	18.43	(1 3 0)[3 -1 0]	1
0.0	90.0	71.03	6.7	0.0	90.0	71.57	(3 1 0)[1 -3 0]	1
5.11	25.11	85.75	4.8	0.0	26.57	90.0	(1 0 2)[0 -1 0]	1
2.86	82.1	18.55	7.8	2.89	81.02	18.43	(2 6 1)[38 -13 2]	1
20.17	25.58	75.23	4.7	22.92	28.58	75.07	(30 8 57)[-2 -21 4]	1
30.41	61.07	14.76	12.0	28.27	59.53	11.31	(1 5 3)[2 -1 1]	1
34.33	45.17	90.0	6.0	35.26	45.0	90.0	(1 0 1)[-1 -2 1] brass	1
51.06	23.78	50.86	5.6	51.69	23.46	50.19	(6 5 18)[-1 -6 2]	1
51.24	75.83	27.98	11.1	48.56	76.07	29.74	(472)[2-23]	1
57.48	19.58	42.02	5.5	54.74	19.47	45.0	(1 1 4)[-1 -7 2]	1
55.15	90.0	40.3	7.1	54.74	90.0	45.0	(1 1 0)[1 -1 2] brass	1
60.15	31.87	64.61	9.9	56.79	29.21	63.43	(2 1 4)[-1 -2 1]	1
62.69	21.84	32.57	5.8	61.75	24.26	33.69	(2 3 8)[-1 -18 7]	1
74.7	19.91	19.46	6.7	74.83	24.25	19.65	(5 14 33)[-2 -37 16]	1
73.11	30.76	54.48	9.9	80.79	35.8	56.31	(3 2 5)[-1 -1 1]	1
80.9	73.85	15.13	5.9	81.35	68.58	11.31	(1 5 2)[1 -5 12]	1
90.0	19.98	2.83	7.2	90.0	18.43	0.0	(0 1 3)[0 -3 1]	1
90.0	20.24	90.0	7.1	90.0	18.43	90.0	(1 0 3)[-3 0 1]	1
90.0	28.92	46.12	8.8	90.0	29.5	45.0	(2 2 5)[-5 -5 4]	1
90.0	71.01	2.99	7.3	89.96	73.29	2.99	(8 153 46)[-8 -146 487]	1
90.0	70.27	90.0	7.0	90.0	71.57	90.0	(3 0 1)[-1 0 3]	1
90.0	90.0	24.12	5.4	90.0	90.0	21.8	(2 5 0)[0 0 1] 1	
58.98	36.7	63.43	9.29	58.98	36.7	63.43	(2 1 3)[-3 -6 4]S	1
MAXODF	= 12.03	MINIODE	0.01					
		12 03/3						
		12.00/0						

23.1.2 等価方位の計算(最大値)

Search 3.0,7,true C Search

f1	F	f2	ODF	calcf1	calcF	calcf2	hkluvw EqualDire	ection
0.0	26.04	0.0	5.46	0.0	26.57	0.0	(0 1 2)[1 0 0] 3	
0.0	90.0	19.38	8.96	0.0	90.0	18.43	(1 3 0)[3 -1 0]	5
34.33	45.17	90.0	7.1	35.26	45.0	90.0	(1 0 1)[-1 -2 1] brass	2
58.98	36.7	63.43	9.29	58.98	36.7	63.43	(2 1 3)[-3 -6 4]S	1
MAXODF=	12.03	MINIODF=	= 0.01					

23.1.3 基準方位優先方位(最大値)

Search 3.0,7,true C Special Search

f1	F	f2	ODF	calcf1	calcF	calcf2	hkluvw	EqualDire	ction
0.0	26.04	0.0	5.46	0.0	26.57	0.0	(0 1 2)[1 0 0]	4	
0.0	90.0	19.38	8.96	0.0	90.0	18.43	(1 3 0)[3 -1 (]	5
34.33	45.17	90.0	7.1	35.26	45.0	90.0	(1 0 1)[-1 -2	1] brass	2
58.98	36.7	63.43	9.29	58.98	36.7	63.43	(213)[-3-6	4]S	1
MAXODF=	= 12.03	MINIODF=	= 0.01						

23.2 DataBase法

DataBase

Fiber ODF	DataBase	Re
	Disp	
A-01	1 ~1 6	-M

ここに登録されている方位に関して密度計算を行います。

23.2.1 すべての方位計算

			Orientation	φ1	Φ	φ2	ODF
			(1 1 3)[-3 -3 2]	90.0	25.24	45.0	6.72
			(1 3 2)[6 -4 3]	27.03	57.69	18.43	6.67
			(2 3 1)[3 -4 6]	52.87	74.5	33.69	6.58
			(2 1 3)[-3 -6 4]	58.98	36.7	63.43	6.11
			(1 0 1)[-1 -2 1]	35.26	45.0	90.0	6.05
			(0 1 1)[2 -1 1]	35.26	45.0	0.0	6.05
			(1 3 1)[3 -2 3]	42.13	72.45	18.43	5.86
			(1 1 0)[1 -1 2]	54.9	90.0	45.0	5.77
			(0 2 1)[1 0 0]	0.0	63.43	0.0	5.23
			(2 0 1)[0 -1 0]	0.0	63.43	90.0	5.23
			(1 4 1)[7 -2 1]	8.05	76.37	14.04	5.17
			(1 2 0)[0 0 1]	90.0	90.0	26.57	4.93
Eibor	ODE DataBase Resolution		(0 1 1)[5 -2 2]	29.5	45.0	0.0	4.9
Tiber	ODF Database Resolution	1	(1 0 1)[-2 -5 2]	29.5	45.0	90.0	4.9
	to ODF±1step		(1 4 1)[1 -2 7]	78.58	76.37	14.04	4.82
EQ .			(1 1 4)[-1 -7 2]	54.74	19.47	45.0	4.77
3	ODF menber list	1.00	(1 3 0)[0 0 1]	90.0	90.0	18.43	4.51
¥ [(0 3 1)[1 0 0]	0.0	71.57	0.0	4.5
뇌기	ODF family list(familyMax)	1.05	(3 0 1)[0 -1 0]	0.0	71.57	90.0	4.5
50			(0 1 2)[1 0 0]	0.0	26.57	0.0	4.47
304	ODF all family list	1.10	(1 0 2)[0 -1 0]	0.0	26.57	90.0	4.47
SMA.			(1 1 0)[-2 2 -5]	60.5	90.0	45.0	4.23
30	ODF all family normalize list	1.15	(1 1 2)[-1 -1 1]	90.0	35.26	45.0	3.51
			(0 1 3)[1 0 0]	0.0	18.43	0.0	3.44
ワー	{hkl} <uvw>Input mode</uvw>	1.20	(1 0 3)[0 -1 0]	0.0	18.43	90.0	3.44
-			(2 1 0)[0 0 1]	90.0	90.0	63.43	3.3
	{hktl} <uvtw>Input mode</uvtw>	1.25	(3 1 0)[0 0 1]	90.0	90.0	71.57	3.25
1 ⁻			(1 3 2)[4 -2 1]	14.96	57.69	18.43	3.11
×		1.30	(2 1 3)[-1 -4 2]	46.91	36.7	63.43	2.99
50	V 55 - 1.0		(2 3 1)[1 -2 4]	64.93	74.5	33.69	2.88
=		1.35	(1 2 1)[1 -1 1]	39.23	65.91	26.57	2.73
			(0 1 1)[1 0 0]	0.0	45.0	0.0	2.72
-		1.40	(1 0 1)[0 -1 0]	0.0	45.0	90.0	2.72
			(1 1 0)[0 0 1]	90.0	90.0	45.0	1.76
		1.45	(0 0 1)[0 -1 0]	90.0	0.0	0.0	1.66
			(0 0 1)[-1 0 0]	90.0	0.0	90.0	1.66
701	75	1.50	(0 1 0)[0 0 1]	90.0	90.0	0.0	1.63
116			(1 0 0)[0 0 1]	90.0	90.0	90.0	1.63
_		All	MAXODF=12.03	MINIODF=	=0.01	(Weight=9	9 Cycle=5)

23.2.2 等価方位の最大方位密度の計算

Fiber	ODF	DataBase Resolution							
		to ODF±1step							
		ODF menber list	>						
		ODF family list(familyMax)	>	1.00					
		ODF all family list	2	1.05					
30		ODF all family normalize list	t >	1.10					
٤		{hki} <uvw>Input mode</uvw>	;	1.15					
		{hktl} <uvtw>Input mode</uvtw>	2	1.20	MaxOrientation	φ1	Φ	φ2	ODF
Sh				1.25	{1 1 3}<-3 -3 2> Q2 {1 3 2}<6 -4 3> S	90.0 27.03	25.24 57.69	45.0 18.43	6.72 6.67
50	16	55 _ 1.0		1.30	{1 0 1}<-1 -2 1> Brass {0 1 2}<1 0 0> Q1	35.26 0.0	45.0 26.57	90.0 0.0	6.05 5.23
9	4			1.35	{0 1 1}<5 -2 2> L	29.5	45.0	0.0	4.9
				1.40	{1 1 4}<-1 -7 2> {1 1 2}<-1 -1 1> copper	54.74 90.0	19.47 35.26	45.0 45.0	4.77 3.51
701	7			1.45	{0 1 3}<1 0 0> {2 1 3}<-1 -4 2> R	0.0 46.91	18.43 36.7	0.0 63.43	3.44 3.11
	Ľ			1.50	{0 1 1}<1 0 0> Goss	0.0	45.0	0.0	2.72
	Q	2		All	{010}<001> cube MAXODF=12.03	90.0 MINIODF=	90.0 0.01	0.0 (Weight=9	0 Cycle=5)

23.2.3 等価な方位の平均値

2	3. 2. 3 守恤な人	加加切干均阻	
Fiber	ODF DataBase Resolution to ODF±1step ODF menber list ODF family list(familyMax)	>	Average{hkl} <uvw>,labotex {001<100>,1.42 {101<-1-21>,5.95 {112<-1-11>,3.12 {011<10>,2.4 {001<1-10>,0.02 {110<1-11>,0.27 {111<-1-12>,0.01 {011<2-55>,0.57 {525<1-51>,0.04 {013<100>,3.94 {122<2-21>,0.2 {113<1-10>,0.01 {112<1-10>,0.03 {233<0-11>,0.02 {111<0-11>,0.02 {111<0-11>,0.01 {213<1-42>,2.99 {132<6-43>,6.45 {122<10>,0.42 {122<10>,0.45 {123<1-42>,2.99} {132<10>,0.45 {123<1-42>,2.99} {132<10>,0.45 {123<1-42>,2.99} {132<10>,0.45 {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45} {123<1-42>,0.45}</uvw>
	ODF all family list	hkluvwmakefile	(Average) $\{001\} < 2-10 > 0.03$
30	ODF all family normalize list	hkluvwfiledisp	{012}<100>,4.6
<u>کا</u>	{hkl} <uvw>Input mode</uvw>	>	{113}<-3-3Z>,6.29 {362}< <u>8-53>,2.05</u>
	{hktl} <uvtw>Input mode</uvtw>	>	{011}<5-22>,4.67

23.2.4 規格化方位の平均値

規格化はrandomレベル(BG)を差し引きし、規格化し、差し引いた BG をプラスする ため、最小方位が必要になります。Randomlevelの場合、peak±0.3deg 平均を用いる 規格化は、4:2:1に対し、1/2:1:2処理が行われる。

例えば、S方位は2倍する (6.45-0.01)*2=12.89

		例えば、S方位は2倍	守る	(6.45 - 0.01))*2=12.89	
						Averagenorm{hkl} <uvw>,labotex {001}<100>,0.72 {101}<-1-21>,5.95 {112}<-1-11>,3.12 {011}<100>,1.21 {001}<1-10>,0.02 {110}<1-11>,0.27 {111}<-1-12>,0.01 {011}<2-55>,0.57 {525}<1-51>,0.04</uvw>
Fiber	ODF	DataBase Resolution				{013}<100>,3.94
		to ODF±1step	1000			$\{122\}<2-21>, 0.39$
FR O		ODF menber list	>	*		$\{113\} < 1-10^{-}, 0.01$ $\{112\} < 1-10^{-}, 0.03$ $\{233\} < 0-11^{-}, 0.02$
8,		ODF family list(familyMax)	>		— 🗆	{111}<0-11>,0.01
		ODF all family list	>			{213}<-1-42>,5.97 _{132}<6-43>,12.89 _{114}<-1-72> 9.83
30		ODF all family normalize list	> hl	kluvwmakefile	Average	{001}<2-10>,0.03
2		{hkl} <uvw>Input mode</uvw>	> hl	kluvwfiledisp	Max	$ \begin{array}{c} \{012\}<100>,4.6\\ \{113\}<-3-32>,6.29\\ (113)<-3-52>,6.29 \end{array} $
		{hktl} <uvtw>Input mode</uvtw>	>			{362}<8-53>,4.09 {011}<5-22>,4.67

23.2.5 規格化方位の最大値

Fiber	ODF	DataBase Resolution	にして	メモ	リン:	クセル	
		to ODF±1step					2.91
£9		ODF menber list	>				
		ODF family list(familyMax)	>			_	
		ODF all family list	>				
30		ODF all family normalize list	2	hkluvwmakefile	5	Averag	е
2		{hkl} <uvw>Input mode</uvw>	;	hkluvwfiledisp		Max	
		{hktl} <uvtw>Input mode</uvtw>	>				

23.2.6 直接入力

入力した方位位置の方位密度が計算される。

入力画面

*INPUTTABLE.TXT - メモ帳 ファイル(F) 編集(E) 書式(O) 表示(V) ヘルプ(H) 101-1-21 1101-12

上書きし、table 再度表示

■ INPUTTABLE.TXT - メモ帳 ファイル(F) 編集(E) 書式(O) 表示(V) ヘルプ(H) 1 0 1 -1 -2 1 35.2644 45.0 90.0 1 1 0 1 -1 2 54.7356 90.0 45.0

上記 euler 角度位置の方位密度が計算される。

inputList

🥘 labotex.csv - 火モ帳

ファイル(F) 編集(E) 書式(O) 表示(V) ヘルプ (hkl)[uvw],labotex (101)[-1-21],6.05 (110)[1-12],5.77

24. HexagonalのODF値

Hexagonalでは、X軸を[100]([2-1-10])、あるいは[210]([1010])に設定する方法があります。 本ソフトウエアでは、[100]をAType,[210]をBTypeとして説明しています。 LaboTexでBTypeで解析したTitaniumのBtypeを読み込む

ODF 図上に赤丸が表示され、Result で計算結果が表示されます。

Marchael Contract Contract

File Help	p							
f1	F	f2	ODF	calcf1	calcF	calcf2	hkluvw(B) Equ	alDirection
0.0	38.69	0.0	164.7	0.0	38.43	0.0	(-1,2,-1,4)[1,0,-1,0] 1
0.0	38.69	60.0	164.7	0.0	38.43	60.0	(1,1,-2,4)[1,-1,0,0]	1
90.0	28.11	0.0	208.8	90.0	27.88	0.0	(-1,2,-1,6)[1,-2,1,1] 1
90.0	28.11	60.0	208.8	90.0	27.88	60.0	(1,1,-2,6)[-1,-1,2,1] 1
MAXODE	= 208 77	MINIODE	= 0.5					

24.2 方位入力法

あらかじめ設定されている方位 euler 角度位置の密度を計算

計算するeuler角度

euler角度から計算した方位密度

方位を変更も可能

25. OrthorhombicのODF値

25.1 ピークサーチ法

LaboTexで解析したPEのODF図を解析

LABOに変更(PEの格子定数 LaboTex [:] 2.54,4	4.93,	7.4,	90,	90,	90)
---	-------	------	-----	-----	-----

	Polyethyl	ene LABC	View	Search 7	7.0,7,false	Help	Fiber	ODF	DataBase	Resolution
			.							
	\backslash	、								
		\backslash								
		\mathbf{n}								
		•								
	File Help D	ata 1.37T[20/12/31] by CTR isp		- L						
	Search									
	Ortho	hombic			~					
		oTex(a<=b<=c α<=90 β< th	=90 γ<=90)							
	1.5405	6 ~								
	Select									
	00-05	-1859			<u> </u>					
	Polyet	nylene la: (C2 H4)n								
		Disp	Cancel	Return Structu	ıre					
	Chem	cal formula	1.)p	Change						
	Input	e. g. C2 H4) (C2 H	•)11	Change						
	ピーク	サーチ								
	M GPODE	Display(V2) 2.17T[20)/12/311 by CT	R						
	File Poly	ethylene LABO	View Searc	h 7.0,7,false H	elp Fiber ODF	Da				
		-	5	SearchValue		>				
		0	Ν	laxIndex	:	>				
			5	earch						
		25		Special Search		-				
					Fruo(MayIntone)	-				
					rue(maximens)	-				
		50		ResultDisp						
		50								
	Result	⁵⁰ Disp で								
	Result	⁵⁰ Disp で							_	
GPO	Result	50 Disp で 0/12/31] by CTR		-	- 0	×				
GPOI	Result	50 Disp で 0/12/31] by CTR View Search 7.0	7,false Hel	p Fiber ODF [— □)ataBase Resoluti	×				
GPOI	Result	50 Disp で 0/12/31] by CTR View Search 7.0 5	7,false Hel	D Fiber ODF [15] 20]	− □ DataBase Resoluti Max=25	× ion 50.34				
GPOI	DFDisplay(V2) 2.17T(2 Nyethylene LABO	50 Disp で 0/12/31] by CTR View Search 7.0	7,false Hel	D Fiber ODF D	- D DataBase Resoluti Max=25 Min=0.6	× 50.34				
GPOI	Result	50 Disp で 0/12/31] by CTR View Search 7.0	7,false Hel	D Fiber ODF E	– D DataBase Resoluti Max=24 Min=0.6 — 240 — 220	× 50.34				
GPOI	DFDisplay(V2) 2.17T[2 Nyethylene LABO	50 Disp で 0/12/31] by CTR View Search 7.0 5 30	7,false Help	D Fiber ODF D	- DataBase Resolut Max=25 Min=0.6 220 220 180	× 50.34 50.34 0.0 0.0	2	c	PODJE	
GPOI	DFDisplay(V2) 2.17T[2 DIyethylene LABO	50 Disp で 0/12/31] by CTR View Search 7.0 5 30	7,false Hel	D Fiber ODF E	- DataBase Resoluti Max=25 Min=0.6 220 200 180 140	× 50.34 50.34 0.0 0.0 0.0		G	PODJE	
GPOI	DFDisplay(V2) 2.17T(2 hyethylene LABO	50 Disp で 0/12/31] by CTR View Search 7.0 5 30 55	7,false Help 10 35 60	D Fiber ODF D 15 20 40 45 65 70	- DataBase Resoluti Max=25 Min=0.6 220 220 180 160 140 120 120 120 140 140 120 120 120 140 140 140 140 140 140 140 140 140 14	× 50.34 50.34 0.0 0.0 0.0 0.0 0.0 0.0		G	PODJE	
I GPOI	Result	50 Disp آ 0/12/31] by CTR View Search 7.0 5 30 55	7,false Help 10 35 60	D Fiber ODF D 15 20 40 45 65 70	- DataBase Resoluti Max=24 Min=0.6 220 200 180 160 140 120 100 80.1	× 50.34 50.34 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	e Defe	c	PODRE	
gpol	Result	50 Disp C 0/12/31] by CTR View Search 7.0 5 30 55 80	7,false Hel	D Fiber ODF D 15 20	- DataBase Resoluti Max=25 Min=0.6 220 220 200 180 180 160 140 210 80.0 80.0 80.0 60 40.0 80.0 60 60 60 60 60 60 60 60 60 60 60 60 60	× 50.34 50.34 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	e Design	c c	PODJE	
GPO le Po	Result	50 Disp で 0/12/31] by CTR View Search 7.0 5 30 55 80	7,false Hel	D Fiber ODF D 15 20 20 40 45 65 70 90 95	- DataBase Resolut Max=25 Min=0.6 220 200 180 180 140 120 100 60.0 40.0 200	× 50.34 50.34 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		c C	PODEFE	
gpoi	DFDisplay(V2) 2.17T[2 DIyethylene LABO	50 Disp ۲ 0/12/31] by CTR View Search 7.0 5 30 55 80 80	7,false Hel	D Fiber ODF D 15 20 20 40 45 65 70 90 95 90 95	- DataBase Resoluti Max=25 Min=0.6 2200 200 180 160 160 120 100 80.6 40.0 200 200 200 200 200 200 200 200 200	× 50.34 30.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	E SAN	c C	PODED	
GPOI	DFDisplay(V2) 2.17T(2 DIVethylene LABO 0 25 50 75 100	50 Disp ۲ 0/12/31] by CTR View Search 7.0 5 30 55 80 80 105	7, false Hell	D Fiber ODF D 15 20	- DataBase Resoluti Max=25 Min=0.6 220 200 180 160 160 100 100 80.0 40.0 20.0	× 50.34 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		c	PODEF	
GPOI	DFDisplay(V2) 2.17T[2 IJ92thylene LABO	50 Disp C 0/12/31] by CTR View Search 7.0 5 30 55 55 80 80 105	7,false Help	D Fiber ODF D 15 20	- DataBase Resoluti Max=24 Min=0.6 220 200 180 160 140 140 200 80.0 100 80.0 200 200 200 200 200 200 200 200 200	× 50.34 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		e	PODRE	
GPOI	Result	50 Disp C 0/12/31] by CTR View Search 7.0 5 55 55 80 80 105	7,false Help	D Fiber ODF D 15 20	- DataBase Resoluti Max=25 Min=0.6 240 220 200 180 140 140 120 80.0 80.0 40.0 20.0	× 50.34 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	で 回 主 美 計 10	c	PODJE	
GPOI	Result	50 Disp C 0/12/31] by CTR View Search 7.0 5 30 55 55 80 80 105 130 TR¥work¥GPODFDisp	7,false Help	D Fiber ODF D 15 20	- DataBase Resolut Max=25 Min=0.6 220 200 180 180 160 140 0.120 100 80.0 60.0 40.0 20.0	× 50.34 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		- -	PODHC EESS	
GPOI	Result	50 Disp C 0/12/31] by CTR View Search 7.0 5 30 55 80 80 105 130 TR¥work¥GPODFDisp	7,false Hel	D Fiber ODF E 15 20	- DataBase Resolut Max=25 Min=0.6 220 200 180 180 140 120 100 80.0 60.0 40.0 20.0	× 50.34 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0				
GPOI	Result	50 Disp C 0/12/31] by CTR View Search 7.0 5 30 55 80 105 130 130 130 130 140 130 140 140 140 140 140 140 140 14	7,false Hel	D Fiber ODF D 15 20 15 20 40 45 65 70 90 95 120 140 15 120 145 145 0 145 145 145 0 145 145 145	- CalCF Ca	× 50.34 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Network		PODEF EBS X	
GPOI Ie Po Ie Po Ie File If1 0.0 0.0	Result	50 Disp C 0/12/31] by CTR View Search 7.0 5 30 55 55 80 80 105 130 TR¥work¥GPODFDisp f2 62.89 117.11	7, faise Help 10 35 60 85 110 195 100 100 100 100 100 100 100 10	p Fiber ODF D 15 20 15 20 40 45 65 70 90 95 115 120 115 120 145 145 0.0 0.0 0.0 0.0 0.0	- CalcF Ca 73.03 66 73.03 11	× ion 50.34 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Вістані Іо Іо Іо Іо Іо Іо Іо Іо Іо	EqualD 1,0]1 -1,0]	PODJE FES Virecti	

25.2 方位入力法

Inputtable の編集

🥘 OTHER.TXT - 火モ帳

 ファイル(F)
 編集(E)
 書式(O)
 表示(V)
 ヘルプ(H)

 0
 0
 1
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</

ファイル(F) 編集(E) 書式(O) 表示(V) ヘルプ(H) 0 0 1 1 0 0 0.0 0.0 0.0 1 1 1 1 -1 0 1 0 0 0 -1 1

📕 labote	х.csv - Х Т	帳		
ファイル(F)	編集(E)	書式(O)	表示(V)	1
(hkl)[u (001)[1 (111)[1 (100)[0	vw],lab 00],0.6 -10],10 -11],23	otex 02.52 34.6		

方位から計算した euler 角度の方位密度を計算、ピークサーチ結果より方位密度が低い

26. TetragonalのODF値

LaboTexで解析したNd2Fe14BのODF図を解析

LABOに変更(Nd2Fe14のLaboTex格子定数: 8.792,8.792,12.174,90,90,90)

GPODFDisplay(V2) 2.17T[20/12/31] by CTR

File Nd2Fe14B LABO View Search 7.0,7,false Help

26.1 ピークサーチ法

🎽 TextDis	ZextDisplay 1.13S C: CHARACTER CONTROL CONT										
File Help											
f1	F	f2	ODF	calcf1	calcF	calcf2	hkluvw	EqualDirection			
0.0	63.18	45.0	132.6	0.0	62.95	45.0	(1,1,1)[1,-	-1,0]1			
54.38	90.0	0.0	128.8	54.16	90.0	0.0	(0,1,0)[1,0	D,1] 1			
54.38	90.0	90.0	128.8	54.16	90.0	90.0	(1,0,0)[0,-	-1,1]1			
MAXODF	= 132.61	MINIODF	= 0.6								

26.2 方位入力法

 ファイル(F)
 編集(E)
 書式(O)
 表示(V)
 ヘルプ(H)

 0
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</

指数部を変更、追加し、上書を行う。 Inputlist で方位密度を計算

labotex.csv - メモ帳
 ファイル(F) 編集(E) 書式(O) 表示(V) ヘルプ(H)
 (hkl)[uvw], labotex
 (001)[100], 0.6
 (111)[1-10],127.36
 (100)[0-11],117.96

ListDisp

27. ODF解析の最小値

ODF解析時の最小値はrandomレベルを示しますが、ODFの最大値が大きいと、 その反動で、randomレベルを突き抜ける現象が見られます。 この対応策を追加しました。

ODFの値が1.0以下で出現頻度の最大値をrandomとしています。

27.1 randomProfileの確認 (random成分の定量)

材料のrandom成分を調べる場合、randomprofileから分布を調べます。

27.2 最小値がマイナスの場合

マイナス状態を確認出来ます。

Averageは1.0以下の平均値 31.1%と計算されます。

27.3 random領域の削除

Normalize

削除する前の合計方位 ZODF、random 削除した合計方位 AODF、 削除したODFをNODFとすると

NODF(f1, F, f2) = NODF (f1, F, f2) *ZODF / AODF

InputMode では、ODF 図を step=1.0deg にデータ補間して計算する。

Euler angle(d	legree) ———			Axis		🗹 γ-Fib	er			
φ1 ang	e 0.0	9	90.0	<mark>∕ φ1</mark>						
Φ angl	e 54.	7	54.7	Φ						
φ2 ang	e 45.	0	45.0	_ φ2						
Title						1			_	
Title	<111>//N	C								
Axis title	(0.0,54.7	45.0))(90	.0,54.7,45.	0)					
Calc N	lax Avarage	;		dataset		Disp	Can	cel		

を計算する。Φend=54.7& φ2=45 の時{111}<112> および {310}<001}の平均値計算 {111}<112>は

(111)[-1-12]	[90.00, 54.74, 45.00]
(111)[1-21]	[30.00, 54.74, 45.00]

{310}<001>は

(310)[001]	[90.00, 90.00, 71.57]
(031)[100]	[0.00, 71.57, 0.00]
(013)[100]	[0.00, 18.43, 0.00]
(130)[001]	[90.00, 90.00, 18.43]
(301)[0-10]	[0.00, 71.57, 90.00]

の平均値を ODFstep=1deg 補間して計算する。

29. Euker角度から方位密度直接計算(Version3)

Version3

<u>#</u>	SPODFDisplay(V3) 3.01T[22/12/31] by CTR				_		×	٦
File	Aluminum View Search 7.0,15,false Help Fiber ODF	DataBa	ase Resoluti	on Ra	ndoms	search	OFF	
	LaboTex ODF Export (PHI1 PHI2 PHI ODF)(Hexa:AorB)	>						
	LaboTex(Triclinic->Orthorombic) .							
	TexTools ODF Export (Hexa:A-Type)	>						
	StandardODF (ODF15,ODF15.bin)							
	NewODF(f1 F f2 Value)	>						
	popLA (Hexa: AType)	>						
	DhmsBunge (*.EOD)							
	MTEX(f1 F f2 Value)	>						
	MTEX(Triclinic(1/4cut) to Orthorhombic)	>						
	MTEX(Triclinic to Orthorhombic(Average))	>						
	EBSD-OIM(f1 F f2 Value)							
	EBSD-OIM(Triclinic to Orthorhombic)							
	Vector	>						
	ATEX(Triclinic)	>						
	ATEX(Triclinicv(1/4) to Orthorhombic)	>						
	Save	>						
	TmpfileDisp							
(Version	> V	ersion1					
	Exit	V	ersion2					
		v	ersion3					
22/06	/14							

Version3

GPODFDisplay(V3)表示では、euler 角度実数から方位密度を計算する

Version3

Euler 角度の整数化で方位密度を補間する。

Version1

ODF の格子点に近い値で計算する。

S方位、R方位、 β -Fiber、 γ -Fiberのような測定格子点以外のeuler角度に 影響します。

30. LaboTexJobODFファイルを直接読み込み平滑化と新しいJob作成

LaboTexでは平滑化機能が乏しい為、外部からLaboTex管理ファイルの平滑化を行う Job内のODFファイルの読み込み

16	GPODFDisplay(V3) 3.02T[22/12/31] by CTR			_		×
File	Fe-alpha View Search 7.0,15,false Help Fiber ODF	Data	Base Resolution	Randoms	earchC)FF
	LaboTex ODF Export (PHI1 PHI2 PHI ODF)(Hexa:AorB)	>	(Hexa: AType) o	r Other		
	LaboTex(Triclinic->Orthorombic)		(Hexa: BType)			
	TexTools ODF Export (Hexa:A-Type)	>				
	StandardODF (ODF15,ODF15.bin)					

平滑化

GPODFDispla	y(V3) 3	3.02T[22/12/31] by CTR				_
File Fe-alpha	View	Search 7.0,15,false Help	Fiber	ODF	Data	аE
		Font size	>			
		Contour grid width	>			
		Static randomlevel				
		ODF Smoothness Point(Cy	cle) >			
		ODF Smoothness Weight	;	1	2	
		Gauss Fitting	;	1	1	

WeightとCycleを組み合わせて平滑化を行う。

新しいJobファイルを作成

Save	LaboTexFomat(φ1,φ2,Φ,ODF) loop(φ1->φ2->Φ)
TmpfileDisp	StandardODFFormat(ϕ 2, Φ , ϕ 1,ODF) loop(ϕ 1-> Φ -> ϕ 2)
Version	EBSD-OIMFormat(ϕ 1, Φ , ϕ 2) loop(ϕ 2-> Φ -> ϕ 1)
Exit	MTEXFomat(φ1,Φ,φ2) loop(φ1 ->Φ ->φ2)
	LazboTex JOBODF make
	90 k

Triclinic->Orthorhombicのようなファイルサイズが異なる場合 save出来ません。 31. EBSDなどの離散データにGauss関数分散

処理結果は、LaboTexのModelling時のeuler角度FWHM変更と同じ処理が 期待できます。

EBSDデータDC06_2uniax. angデータをLaboTexに読み込む

MTEXで用いられている分散処理を行う

四角形の領域切り取り(R)

分散処理指定

GPODFDisplay(V3) 3.03T[23/06/19] b	py CTR				_		×
File A-Iron-Measure-IntegralD View	w Search 7.0,15,fal Help Fiber OD	F	DataBas	Resoluti	oı Rar	ndomsear	chOf
filename: C:\LaboTex2\USE	Font size	>	EtoO.LAB\	Job01\DC06_	_2unia:	Vax=1311.97 Vin=0.0	
	Contour grid width	>		5		1311.5 1311.0 1310.5	
	Static randomlevel		•	15		1310.0 1309.5 1309.0 1308.5	
	ODF Smoothness Point(Cycle)	>				1306.0 1307.5 1307.6 1306.5 1306.5	
	ODF Smoothness Weight	>		25		1306.5 1306.5 1306.0 1304.5 1304.5	
	Gauss Fitting FWHM	>	0			1303.5 1303.0 1302.5	
	Filename disp OFF		5	35		1302.0 1301.5 1301.0 1300.5	
	GraphicsSize		10	-		1209.5 1209.5 1209.6 1208.5 1208.6	
			15	45		1297.6 1297.0 1296.5	
			20	•		1296.0 1295.5 1295.0 1294.5	
			25	55		1294.0 1293.5 1293.0 1293.0 1292.6	

データsaveでJob作成

ATEX(Triclinicv(1/4) to Orthorhombic)	
Save	LaboTexFomat(φ1,φ2,Φ,ODF) loop(φ1->φ2->Φ)
TmpfileDisp	StandardODFFormat(φ2,Φ,φ1,ODF) loop(φ1->Φ->φ2)
Version	EBSD-OIMFormat(φ1,Φ,φ2) loop(φ2->Φ->φ1)
Exit	$MTEXFomat(\varphi 1, \Phi, \varphi 2) loop(\varphi 1 \rightarrow \rightarrow \varphi 2)$
	LazboTex JOBODF make
	90

処理前のVF%と処理後のVF%は同程度が確認されています。

31. BCC θ -Fiberに関して

Fiber-Input euler step angle より θ -Fiber を選択

GPODFDisplay	y(V1) 3.07T	[22/12/31] k	oy CTR						-	-		×
File A-Iron-Mea	asure-Inte	egralData \	View Sea	rch 7.0,15	i,fals∈ Help	Fiber O	DF Data	aBase Reso	lution Ra	andor	nsearc	hOFF
f	ilename: U:\	2022-07-13-1	fiber\Stand	ardODF\ODF	15	Sm	oothing-	ON		M	1ax=19	3.29
						BC	С		>	M	1in=-1.	61
-						FC	С		>	_	30. 28.	0
						Inp	ut euler	step angle		_	26. 24.	0
		20		25		30		35			22.	0
-		40		45		50		55			18.1 16.1 12.1 12.1 10.1 8.0 6.0 4.0 2.0	U 0 0 0

Euler angle(d	legree) ———		Axis	🗌 γ - Fiber(JFε) 🗹 θ - Fiber(YNU)				
φ1 ang	le 0.0	90.0	<mark>∕ φ1</mark>	□ ε -Fiber(JFE)				
Φ angl	e 0.0	0.0	Φ	(411)[148]/(111)[112] (NS)				
φ2 ang	le 0.0	0.0	φ2					
Title								
Title	<001>//ND							
Axis title	(0.0,0.0,0.0)(90.0,0.0,0.0)V1							

Dispにて

<001>//NDは、19.29以上である。

32. BCC ϵ -Fiberに関して

Fiber-Input euler step angle より ϵ -Fiber を選択

最大方位は(0,40,45)で(90,60,45)は最大方位ではない。

33. {411} <148>/ {111} <112>に関して

Fiber-Input euler step angle より (411)[148]/(111)[112]を選択

GPODFDisplay(V1) 3.07T[22/12/31] by CTR	_			
File A-Iron-Measure-IntegralDa View Search 7.0,15, fals Hel	p Fiber ODF DataBase Resol	utior Rand	lomsearchOF	
filename: C:\ODF\ODF15	Smoothing-ON		Max=7.57	
	BCC	>	Min=-0.76	
	FCC	>	7.0 6.0	
	Input euler step angle		5.0 4.0	
20 25 25			3.0 2.0 1.0	

🎽 euler fiber			-			\times			
Euler angle(degree)				Axis	γ -Fiber(JFE) θ -Fiber(YNU)				
φ1 angle 19		19.47	90.0	<mark>∕ φ1</mark>	\Box ε -Fiber(JFE)				
Φ angle		19.47	54.74	Φ	(411)[148]/(111)[112] (NS)				
φ2 angle		45.0	45.0	φ2					
Title									
Title	{411}<148>/{111}<112>								
Axis title	(19.47,19.47,45.0)(90.0,54.74,45.0)V1								
Calc Max Avarage (dataset Disp) Cancel									

34. random (BG) 定量

r a n d o m 試料では方位密度は1.0(randomlevel)であるが、c u b e 方位が30%含まれると

randomlevelは0.7になる。すなわち70%である。

r a n d o m l e v e l はODFに乱れがなければ最小値である。

(Hermonic法のODF解析では方位密度1.0以下が乱れやすい)

方位密度1.0以下を100の方位密度Boxを想定し方位密度1.0以下をこのBoxに振り分けると randomlevelはBoxの最大値と一致する。

このような検索を行うのがrandomlevelサーチである。

Max = 0.5 - > 50%はODF解析において、VF%を求める際のbackgroundであり random成分と極点処理におけるbackgroud削除過多が含まれます。

35. FWHM の計算

方位の半価幅を計算する。

Fiber->Value calcangle->FWHM で計算

