MTEXによるZnCuTi. UXDの解析

2020年12月13日 *HelperTex Office* MTEXのPoleFigureDataとしてZnCuTiが付属している。

mtex-5.4.0 > data > PoleFigure > ZnCuTi

^	名前 ^	更新日時	種類	サイズ
	ZnCuTi_defocusing_PF_002_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB
	ZnCuTi_defocusing_PF_100_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB
	ZnCuTi_defocusing_PF_101_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB
	ZnCuTi_defocusing_PF_102_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB
	ZnCuTi_Wal_50_5x5_PF_002_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB
	ZnCuTi_Wal_50_5x5_PF_100_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB
	ZnCuTi_Wal_50_5x5_PF_101_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB
	ZnCuTi_Wal_50_5x5_PF_102_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB

2 θ 角度は

指数	28角度
002	36.54
100	39.13
1.01	43.395
102	54.566

Zn をベースにした合金と近い Zr を参考に

Zirconium-He	exagonalDISP				
3.232	(1.0)				
3.232	(1.0)				
5.147	(1.5925)				
90.0					
90.0					
120.0					
1.54056					
16					
1	0	0	33.0	2.799	31.948
0	0	2	32.0	2.5735	34.833
1	0	1	100.0	2.4589	36.512
1	0	2	17.0	1.8944	47.983

{100},{002}から格子定数を求めると

ZnCuTi-edit Hexagonal 2.6558 2.6558 4.9134 90.0 90.0 120.0 1.54056 16	(1.0) (1.0) (1.8501)				
1	0	0	33.0	2.3	39.134
0	0	2	32.0	2.4567	36.546
1	0	1	100.0	2.0831	43.404
1	0	2	17.0	1.679	54.616
1	1	0	17.0	1.3279	70.911

後で、格子定数の問題でエラー発生するが回避

このデータを以下の手順でMTEXで解析を行う

2. 解析手順

defocusファイルをUXD->ASC変換
ASCdefocusからdefocusプロファイル作成
配向UXDをASC変換
配向ASCデータの極点処理(defocus、規格化)
MTEX入力データ作成
MTEXで解析
再計算極点図をExportしRp%を計算
ODFの解析

3. defocusファイルをUXD->ASC変換

UXDのASC変換は、UxdtoAscソフトウエアで行うが、従来の変換では

1つのファイルに複数の極点図で構成されていたが、今回は複数のファイルに対応するため変更

<u> </u>	UxdtoAsc 1	JxdtoAsc 1.16T[20/12/31] by CTR						×
File	e Help							
	InputFile ZnCuTi_defocusing_PF_002_R.UXD_ZnCuTi_defocusing_PF_100_R.UXD_ZnCuTi_def						_defocusi	ing_P
	MakeDir ZnCuTi_defocusing_PF_002_R-work ZnCuTi_defocusing_PF_100_R-work ZnCuTi_defocusing						ing	
1	Material							
	Use Material ZnCuTi-edit						LIST	
	RD Beta=0 CCW TD Beta=0 CCW							
	Start Asc file has been Created. !!							
			Ret	urn Structure]			

結果

mtex-5.4.0 > data > PoleFigure > ZnCuTi						
^ 名前 [^]	更新日時	種類	サイズ			
UXD_work	2020/12/13 3:51	ファイル フォルダー				
ZnCuTi_defocusing_PF_002_R-work	2020/12/13 3:51	ファイル フォルダー				
ZnCuTi_defocusing_PF_100_R-work	2020/12/13 3:51	ファイル フォルダー				
ZnCuTi_defocusing_PF_101_R-work	2020/12/13 3:51	ファイル フォルダー				
ZnCuTi_defocusing_PF_102_R-work	2020/12/13 3:51	ファイル フォルダー				
ZnCuTi_defocusing_PF_002_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB			
ZnCuTi_defocusing_PF_100_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB			
ZnCuTi_defocusing_PF_101_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB			
ZnCuTi_defocusing_PF_102_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB			
ZnCuTi_Wal_50_5x5_PF_002_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB			
ZnCuTi_Wal_50_5x5_PF_100_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB			
ZnCuTi_Wal_50_5x5_PF_101_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB			
ZnCuTi_Wal_50_5x5_PF_102_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB			

> mtex-5.4.0 > data > PoleFigure > ZnCuTi > UXD_work

^	名前 ^	更新日時	種類	サイズ
	🛺 002_0_36.54.ASC	2020/12/13 3:51	RINT200077+-	15 KB
	100_0_39.13.ASC	2020/12/13 3:51	RINT200077+-	15 KB
	🖳 101_0_43.395.ASC	2020/12/13 3:51	RINT200077+-	15 KB
	🖳 102_0_54.566.ASC	2020/12/13 3:51	RINT200077+-	15 KB

4. ASCdefocusからdefocusプロファイル作成 ASCファイルの処理はODFPoleFigureソフトウエアで行う

🕍 (0,0,2)368.76 — 🗆 X 🕍 (1,0,0)338.84 — 🗆 X 🕍 (1,0,1)594.76 —	
	Invese
	vision MinimumMode Rn% Normalization
ODFPolefigure1.5 1.65T[20/12/31] by CTR File Linear(3D) ToolKit Help InitSet Ro% Minumum All background Transmission blinds=	- C X
Files select 002_0_3654 ASC 100_0_39.13 ASC 101_0_43.95 ASC 102_0_54.566 ASC	
Calcration Condition Previous Next C¥mtex-5.4.0¥data¥PoleFigure¥ZnCuTi¥UXD_work¥002_0_86.54.ASC	hkl 0.0.2 Change
Backgroud delete mode □ DoubleMod SineleMode LowMode HighMode Nothing Minimum(&β) ○ M	diniAver X 1.0 Set Disp RD 0.0 Interporation ~ Full Disp
AbsCalc Pef Trans Schulz reflection method Change Absorption coefficien 1.0	1/cm Thickness 1.0 cm v Set 2Theta 36.54 deg.
Defocus file Select Transmission defcous HKL+T	TextDisp
Smoothing(for ADC) Cycles 2 Veright 15 Afterconnection Disp CTR Connect	Center Data
	ValueODF-B ValuODF-A Cancel Calc Connect ODF File
	Select crystal : Hexagonal 20/12/13
	CTRHome : C:
MultiDisp Ver.1.107S X	MultiDisp Ver.1.107S — — X
375 -	350 J
350 - 3225 - 300 -	325 300 275
275-250-	250 - 225 -
\$ 200 175	\$ 175 150
150 125 100	125 - 100 -
75 - 50 - 25 -	75
0 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90	0 1 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
miniP — maxP — aveP — bg1 — bg2	ana minPmaxPavePbg1bg2
MultiDisp Ver.1.107S − □ × 101_0_43.395.ASC	MultiDisp Ver.1.107S × 102_0_54.566.ASC
600 550	225
500 - 450 -	175
400 - 2 350 -	150 2 125
3 300 - 250 -	8-100.
200	50 -
50-	25
15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 alfa	15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 alfa
— miniP — maxP — aveP — bg1 — bg2	<u> </u>

バックグランドは測定されていない。

4.1 ODFPoleFigure処理でASCからTXT2に変換される

1

> mtex-5.4.0 > data > PoleFigure > ZnCuTi > UXD_work

▲ 名前	更新日時 个	種類	サイズ
🛱 002_0_36.54.ASC	2020/12/13 3:51	RINT200072+-	15 KB
4 100_0_39.13.ASC	2020/12/13 3:51	RINT2000774-	15 KB
43.395.ASC	2020/12/13 3:51	RINT2000774-	15 KB
42 102_0_54.566.ASC	2020/12/13 3:51	RINT2000774-	15 KB
🚇 002_0_36.54_ch_2.TXT	2020/12/13 4:01	テキスト文書	22 KB
📲 100_0_39.13_ch_2.TXT	2020/12/13 4:01	テキスト文書	22 KB
📳 101_0_43.395_ch_2.TXT	2020/12/13 4:01	テキスト文書	22 KB
102_0_54.566_ch_2.TXT	2020/12/13 4:01	テキスト文書	22 KB

4. 2 TXT2からdefocusプロファイル作成

M ODFPolefigure1.5 1.65T[20/12/31] by CTR		_		×
File Linear(3D) ToolKit Help InitSet Rp% Minumum All background Transmission blinds=30				
Files select 002_0_36.54 ASC 100_0_39.13 ASC 101_0_43.395 ASC 102_0_54.566 ASC Octor 100_0_0_0_0_0_0_0_0_0_0_0_0_0_0_0_0_0_0	- 創 開く - ファイルの場所の: UXD_work ~	🦸 📂 🛄 -		×
Calcration Condition Previous Next O#mtex=5.4.0#data#PoleFigure#ZnCuT#UXD_work#002_0_38.54 ASC Backgroud delete mode	 2 002_0_36.54_ch_2.TXT 2 100_0_39.13_ch_2.TXT 2 100_0_39.13_ch_2.TXT 2 101_0_43.395_ch_2.TXT 2 102_0_54.566_ch_2.TXT 			
AbsCalc Ref Trans Schulz reflection method Change Absorption coefficien 1.0 1/	デスクトップ			
Defocus file Select Transmission defcous HKL+T □				
Filemake success!	PC アテイル名(N): <u>ch_2.TXT^{**} 101_0_43.895_ch_2.TXT^{**} 102_0_54.566_</u> ネットワーク ファイルのタイプ(T): <u>*_2.Txt*_2txt*_2.TXT</u>	_ch_2.TXT"	開 取:	K 消

複数選択を開くとプロファイルファイルが登録されます。

- 1	Defect	io filo Sol	eat Tranamianian de	foous HKL+T			
1	Denoce		cot mananinaalon do	ICOUS TIKE! I			
		2	🗹 Normalization	Polynomialdegr	0 Z Tenck Ihoff Fitting	g TXT2 C:¥mtex-5.4.0¥data¥PoleFigure¥ZnCuTi¥UXD_work¥defocus¥DEFOCUS_F.TXT	TextDisp

5. 配向XRDをASC変換

defocus処理と同一の処理を行うため、defocusのworkエリアホルダ改名して行う

UxdtoAsc 1.16T[20/12/31] by CTR	_		×		
гие нер					
InputFile ZnCuTi_Wal_50_5x5_PF_002_R.UXD ZnCuTi_Wal_50_5x5_PF_100_R.UX	D ZnCu'	Ti_Wal_50	_5×5		
MakeDir ZnCuTi_Wal_50_5x5_PF_002_R-work ZnCuTi_Wal_50_5x5_PF_100_R-work ZnCuTi_Wal_50_5x5					
Material		LIST			
RD Beta=0 CCW ID Beta=0 C	CW				
Start Asc file has been Created. !!					
Return Structure					

> mtex-5.4.0 > data > PoleFigure > ZnCuTi

^ 名前 [^]	更新日時	種類 ~ サ	イズ
UXD_work	2020/12/13 4:22	ファイル フォルダー	
UXD_work-defocus	2020/12/13 4:13	ファイル フォルダー	
ZnCuTi_defocusing_PF_002_R-work	2020/12/13 3:51	ファイル フォルダー	
ZnCuTi_defocusing_PF_100_R-work	2020/12/13 3:51	ファイル フォルダー	
ZnCuTi_defocusing_PF_101_R-work	2020/12/13 3:51	ファイル フォルダー	
ZnCuTi_defocusing_PF_102_R-work	2020/12/13 3:51	ファイル フォルダー	
ZnCuTi_Wal_50_5x5_PF_002_R-work	2020/12/13 4:18	ファイル フォルダー	
ZnCuTi_Wal_50_5x5_PF_100_R-work	2020/12/13 4:18	ファイル フォルダー	
ZnCuTi_Wal_50_5x5_PF_101_R-work	2020/12/13 4:18	ファイル フォルダー	
ZnCuTi_Wal_50_5x5_PF_102_R-work	2020/12/13 4:18	ファイル フォルダー	
ZnCuTi_defocusing_PF_002_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB
ZnCuTi_defocusing_PF_100_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB
ZnCuTi_defocusing_PF_101_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB
ZnCuTi_defocusing_PF_102_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB
ZnCuTi_Wal_50_5x5_PF_002_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB
ZnCuTi_Wal_50_5x5_PF_100_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB
ZnCuTi_Wal_50_5x5_PF_101_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB
ZnCuTi_Wal_50_5x5_PF_102_R.UXD	2020/10/12 5:24	UXD ファイル	33 KB

> mtex-5.4.0 > data > PoleFigure > ZnCuTi > UXD_work

^	名前	更新日時 ^	種類	サイズ
	🖳 002_0_36.54.ASC	2020/12/13 4:22	RINT200077+-	15 KB
	🖳 100_0_39.13.ASC	2020/12/13 4:22	RINT200077+-	15 KB
	43.395.ASC 101_0_43.395.ASC	2020/12/13 4:22	RINT2000774-	15 KB
	🖳 102_0_54.566.ASC	2020/12/13 4:22	RINT2000774-	15 KB

6.配向ASCデータの極点処理(defocus、規格化)
defocusプロファイルのホルダが変更されているため、再選択を行う
配向極点図(ASC)を選択
M ODFPolefigure1.5 1.65T[20/12/31] by CTR - X
File Linear(3D) ToolKit Help InitSet Rp% Minumum Mackground Transmission blinds=30
ASC(RINT-PC) 002_0_36.54 ASC 100_0_39.13 ASC 101_0_48.395 ASC 102_0_54.566 ASC
Calcration Condition
Previous Next C#mtex-5.4.0¥#sta¥PoleFigure¥ZnCuTi¥UXD_work¥002_0_36.54 ASC 0,0,2 Change □ + α 5 Arithmetic mean Disp
Backgrouid delete mode
AbsCalc
Defocus file Steet Transmission defcous HKL+T
C Reversion Polynomialdegr 0 TencklhoffFitting TXT2 C#mtex-54.0¥data¥PoleFigure¥ZnCuTi¥UXD_work-defocus¥defocus¥defocus¥DEFOC TextDisp 0 1/Ra Profile
Smoothing(for ADC) Normalization CenterData Outries Outries Cycles 2 v Weight 15 v Afterconnection Disp CTR Connect Average Select crsytal Cubic O Ras Asc TXT2 TXT
ValueODF-B ValuODF-A Cancel Calc Connect ODF File
Select crystal : Hexagonal 20/12/13 CTRHome : C:

Calcでdefocus補正+規格化が行われます。

M ODFPolefigure 1.5 1.65T[20/12/31] by CTR — 🗆 🗙
File Linear(3D) ToolKit Help InitSet Rp% Minumum All background Transmission blinds=30
Files select O02_0_36.54 ASC 100_0_39.13 ASC 101_0_43.395 ASC 102_0_54566 ASC
Calcration Condition Previous Next Cx#mtex~54.0#data#PoleFigure#ZnCuTi#UXD_work#002_0_38.54 ASC
DoubleMod. SingleMode LowMode HighMode Nothing O Minimum(α,β) O MiniAver X 1.0 Set Disp
AbsCalc - AbsCalc - Change Absorption coefficien 1.0 1/cm Thickness 1.0 cm v Set 2Theta 36.54 deg. 0 1/kt Profile
Dancel Calc Connect ODF File
Select crystal : Hexagonal 20/12/13 CTRHome : C:

+ mtex-5.4.0 + data + PoleFigure + ZnCuTi + UXD_work

^	名前	更新日時 个	種類	サイズ
	002_0_36.54.ASC	2020/12/13 4:22	RINT20007スキー	15 KE
	🖳 100_0_39.13.ASC	2020/12/13 4:22	RINT200077+-	15 KE
	43.395.ASC	2020/12/13 4:22	RINT200077+-	15 KE
	4102_0_54.566.ASC	2020/12/13 4:22	RINT2000774-	15 KE
	📳 002_0_36.54_chDS_2.TXT	2020/12/13 4:28	テキスト文書	26 KE
	🖷 100_0_39.13_chDS_2.TXT	2020/12/13 4:28	テキスト文書	26 KE
	📳 101_0_43.395_chDS_2.TXT	2020/12/13 4:28	テキスト文書	26 KE
	📳 102_0_54.566_chDS_2.TXT	2020/12/13 4:28	テキスト文書	26 KE

7. MTEX入力データ作成

ValueODF-B ValuODF-A Cancel	Calc Connect	ODF Fil	e
PFtoODF3 8.47T[20/12/31] by CTR e Option Symmetric Software Data Help			- 🗆 X
Material ZnOuTi-edit.txt			Start
Structure Code(Symmetries after Schoenfiles)	11 - D6 (hexagonal)	~) getHKL<-Filename
a 1.0 <=b 1.0 <=c 1.8501 alpha 9	0.0 beta 90.0 gamm	n 120.0	AllFileSelect
PF Data	htt official		
002_0_36.54_chDS_2.TXT	0,0,2 36.54	0.0->75.0 0.0	75.0 V
100_0_39.13 chDS_2.TXT	1,0,0 39.13	0.0->75.0 0.0	75.0
101 0 43.395 chDS 2.TXT		0.0->75.0 0.0	75.0
102 0 54,566 chDS 2.TXT	1.0.2 54.566	0.0->75.0 0.0	75.0
	211 00	0.0	
	311 0.0		
	331 0.0		
	4.2.2 0.0		
	4,2,2 0.0		
	5.1.00	0.0	
	5.2.1 0.0	0.0	
	5,5,1 0.0	0.0	
Comment 002_0_36.54_chDS_2.TXT 100_0_39.13_chDS	_2.TXT 101_0_48.395_chDS_2.TXT	102_0_54.566_chDS_3	2.TXT
CenterData	Eaf file anue	Labotex(EPF),po	pLA(RAW) filename —
Symmetric type Full	Epi ne save		
Material ZnCuTi-edit.txt C ZnCu ⁷ PFtoODF3 8.47T[20/12/31] by CTR	「を選択で、指数の確	認を行う。	
e Option Symmetric Software Data	Help		
Outside text(Vector) CCW	ر MTEX	(ASC) CCW	選択
Asc(CCW) file save で			
x-5.4.0 > data > PoleFigure > ZnCuTi > UXD_v	vork		
^ 名前	更新日時	種類	サイズ
	2020/12/13 4:35	ファイル フォルダー	-
44 002_0_36.54.ASC	2020/12/13 4:22	RINT20007スキー	15 KB

8. MTEXで解析

ホルダ選択

ホーム プロット アプリ
3 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日
新規 新規 新規作成 開く 10 比較 データの ワークスペースの → 変数を開く ▼
スクリプト ライブ スクリプト マ マ インボート 保存 🧞 ワークスペースの
ファイル 変数
שלא לא שלא שלא שלא שלא שלא שלא שלא שלא ש
>> import_wizard
Import Wizard - X
Import Pole Figures
Select Data Files
Pole Figures ERSD ODE Tensor xrd
Data Rackaround Defocusion Defocusion RG +
TU2R.ASC
Plot K Finish
Minport Wizard – X
Crystal Reference Frame
orystal cynniedry
Mineral Indexed ONot Indexed
mineral name Titanium Load Cif File
plotting color
Crystal Coordinate System
Point Group 6/mmm ~ X a* ~ Y b ~
Axis Length a 2.65 b 2.65 c 4.91
Axis Angle alpha 80 beta 90 gamma 120
Plot << Previous Next >> Finish
Titaniumの格子定数な

再計算極点図をExportしRp%を計算

🛛 💽 Import Wizard		_		
Specimen Reference Fram _ Specimen Symmetry	e			
Specimen Coordinate System rotate data by Euler angles (Bunge) in specimen symmetry MTEX Plotting Convention $\begin{array}{c} \mathbf{Y} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{x} $	degree 0 0 -1 triclinic Y $\mathbf{X} \rightarrow \mathbf{X}$ $\mathbf{Y} \rightarrow \mathbf{X}$ $\mathbf{X} \rightarrow \mathbf{Y}$ nate system is properly a	0 $\mathbf{x} \mathbf{\downarrow}^{\mathbf{Y}}_{\mathbf{z}}$ aligned!	Y ← Z ↓ X	
Plot	<< Previous Next >	>	Finish]
Minport Wizard		_		(
Miller Indices Correct Miller Indices				
Imported Pole Figure Data Sets () 002R.ASC (10-10) 100R.ASC () 101R.ASC () 102R.ASC	Miller h k i l Struc	Indeces	0 0 2 efficients	
For superposed pole figures seperate multiple Miller indece and structure coefficients by space!				
Plot	<< Previous Next >	› >	Finish	

格子定数が少しずれているため、エラー発生するも、mファイルを作成し修正

```
h = { ...
Miller(0, 0, 0,2.095600e+00,CS),...
Miller(1, 0,-1, 0,CS),...
Miller(1, 0, -1,1.047800e+00,CS),...
Miller(1, 0, -1,2.095600e+00,CS),...
};
```

| h = { Miller(0,0,0,2,CS), Miller(1, 0,-1, 0,CS),Miller(1,0,-1,1,CS), Miller(1,0,-1,2,CS)};↓

PFをExport

9. 再計算極点図をExportしRp%を計算

バックグランド削除していないためか、良好な Rp%が得られる。

10. ODFの解析

10. 1 Triclinci->Orthorhombic

2.2 2.0 1.8 1.6

1.4 1.2 1.0 0.8 0.6

0.4 0.2

Bungew2section ingeψ2sec..... <u>0 90</u> 7ψ1

step=5.0

0

90 l

 \times

ψ1=0.0 Φ=63.8 ψ2=0.0 ODF=2.0 ---> (-5,10,-5,9)[1,0,-1,0] ψ1=0.0 Φ=64.06 ψ2=0.0 20/12/12

