Imageデータから作成したデータをMTEX解析

Cu 7/7-125µmg

 $10 \mu m \phi$ のコリメータ使用

Image データから極点図作成

不完全極点図データからMTEXによるODF解析結果
 Max=14.6

2019年12月16日 HelperTex Office

イメージデータから極点図作成

- 1. 概要
- 2. randomデータ
- 3. 極点処理(ODFPoleFigure1.5)
- 4. MTEX向けデータ作成
- MTEXに読み込み
- 6. PFtoODF3ソフトウエアで1/4対称操作を行う。
 - 6.1 ODF図をExportし、CTRで表示
 - 6.2 再計算極点図
 - 6.3 Error評価
 - 6. 4 各方位密度
 - 6.5 方位密度に4:2:1の重み評価
 - 6. 6 LaboTexにODF解析結果を読み込み VolumeFraction 計算で順位確認
 - 6. 7 VolumeFraction

1. 概要

Imageデータから極点図を作成すると、極点図の範囲は一定ではなく、2 θ 角度により α 方向の範囲が異なる。

このようなデータをODF解析する場合、LaboTex,TexToolsは可能であるが MTEXでどのように扱われるかチェックを行う。

MTEXは、MATLABが動作すれば、Freeのアプリケーションとしてdownload可能

2. random測定データ

このデータを用いてdefocus曲線を作成し、光学系の補正を行う。

3. 極点処理(ODFPoleFigure1.5)

₩ {2,2,0}0.02 - □ ×	₩ {2,2,2}0.01 - □ × ₩ {3,1,1}0.01 - □ × ₩ {3,3,1}0.01 - □ × ₩ {4,0,0}0.0 - □ ×							
<u>M</u>	M ODFPolefigure 1.5 1.63 by CTR PDuser ctr helpertex – 🗆 🗙							
File Linear(3D) ToolKit Help InitSet Rp% Minumum All background Transmissionblinds=30.0								
Files select ASC(RINT-PC) V 220-5deeZoutasc 222-5deeZoutasc 311-5deeZoutasc 400-5deeZoutasc								
Calcration Condition								
Previous Next U¥則定データ	04材料 - Cu¥2008-11-10-007CMFユーザミーティング(GoodFellow)¥Cu-Wire¥dra hkl 2,2,0 Change Disp Disp Disp							
Backgroud delete mode								
DoubleMod SingleMode	wMode 🕘 HighMode 🖲 Nothing 🔿 Minimum(α,β) 🔿 MiniAver X 1.0 Set Disp							
AbsCalc								
Ref Trans Schulz reflection in	ethod v Change Absorption coefficien 133.0 1/cm Thickness 0.2 cm v Set 2Theta 0.0 deg. () 1/Kt Profile							
Normalization Poly	HKL+1 nomialdegr 0 マ Tenck hoffFitting TXT2 U¥測定データO¥材料 - Cu¥2008-11-10-OO 7CMFユーザミーティング(GoodFellow) アメtDisp ③ 1/Ra Profile V							
Smoothing(for ADC)	Normalization CenterData Uuthiles							
Cycles 2 v Weight 15 v	Afterconnection Disp CTR Connect Average Search minimum EqualAngleRp%(Cubic only)							
	ValueODF-B ValuODF-A Cancel Calc Connect ODF File							
	Select crystal : Cubic 19/12/16							

defocus補正結果

4. MTEX向けデータ作成

PFtoODF3 8.46 by CTR PDuser ctr helpertex							
File Option Symmetric Software Data Help							
Lattice constant Material A-Iron-Measure-IntegralData.txt	Initialize Start						
Structure Code(Symmetries after Schoenfiles) 7 - O (cubic)	● getHKL<-Filename						
a 1.0 <=b 1.0 <=c 1.0 alpha 90.0 beta 90.0 gamm 90.0	AllFileSelect						
PF Data							
Selectric (Alto, interis) n,cl 21neta Apra scope 220-5degZout_chDS_2.TXT 2,2,0 0.0 15.0->50.0	IS.0 50.0						
222-5degZcut_chDS_2.TXT 2,2,2 0.0 20.0->55.0	20.0 55.0						
311-5degZcut_chDS_2.TXT 3,1,1 0.0 20.0->60.0	20.0 60.0						
331-5degZcut_chDS_2.TXT 3,3,1 0.0 35.0->60.0	35.0 60.0						
400-5degZcut_chDS_2.TXT 4,0,0 0.0 25.0->60.0	25.0 60.0						

極点図の範囲が異なる

5. MTEXに読み込み

	Imp	port Wizard		- 🗆 🗙				
Miller Indi Correct Miller	ces Indices							
Imported Pole F (220) (222) (311) (331) (400)	Figure Data Sets 220.ASC 222.ASC 311.ASC 331.ASC 400.ASC		Miller Indece	es2 2 2 0 oefficients1				
For superposed pole figures seperate multiple Miller indece and structure coefficients by space! Plot << Previous								
MTEXで読み込まれた極点図を表示 Ax: (220) (Ax: (31) (Ax: (31))								
$MT E X O$ $ \overset{0}{\underset{60}{\text{Max:}}} \overset{\text{Max:}}{\underset{90}{\text{Min:}}} \overset{\text{O}}{\underset{90}{\text{Min:}}} \overset{\text{O}}{\underset{90}{M$	ODF解析結果	0 Max: @ 30 19 60 Mint 0.0029 90						

(**400**)

Max: 5.8

Min: 0

0 120 240 360 120 240 360 φ_1 φ_1 0 _{Max:} 0 Max 0 30° 45° 30-20 30 -13 ÷ \bigcirc ÷ 60 Min: 90 0.0097 60 Min: 90 0.0066 0 . (120 240 360 120 240 360 φ_1 φ_1 0 Max: 0 Max: 30 22 0 60° 75° 30 -14 \bigcirc Φ 60 Min: 90 0.0028 θ 60 Min: 90 0.0056 0 0 6 120 240 360 0 120 240 360 φ_1 φ_1

6. PFtoODF3ソフトウエアで1/4対称操作を行う。(1/4ODF図を得るため)

6.1 ODF図をExportし、CTRで表示(FullODF図(Triclinic)から1/4ODF図)

6.2 再計算極点図

6.3 Error評価 (ValueODFVF) Rp%=5.0%

6. 4 各方位密度(GPODFDisplay) 1/40DF図から方位計算

6.5 方位密度に4:2:1の重み評価(GPODFDisplay)

6.6 LaboTexにODF解析結果を読み込み VolumeFraction 計算で順位確認
 LaboTexに読み込み(LaboTexODFFile経由)
 結晶方位の定量値と4:2:1の方位密度の比較を行う為、定量値(VF%)を求める

6. 7 VolumeFraction

Quantitative Analysis - Model Functions Method - Project: Inport Sample:Mtex1 Job:2									
Crystal Symmetry (Cubic)	v	Step 0.50 Diagram Range +/- 45.0							
Component No 1.	100.0%	Component No 1		100.0%	Component No 1.				
-45.0	45.0 -45.0		45.0	0 -45.0	45.0				
No Texture Component	On Distribution	<mark>гүнм</mark> <mark>гүнмФ</mark>	FWHM 🖗 🖁	Volume Fraction	Show Sym. Eq.				
1 {1 1 2 × 1 1 -1 > copper 🚽	🗹 Gauss 👻	19.0 19.4	20.9	25 %	{ 1 1 2 }< 1 1 ·1 > copper 🛛 💌				
2 {110}11>	🗹 Gauss 👻	19.1 19.8	19.4	25 %	- Calculation Mode				
3 {0 0 1}< 1 0 0> cube 💌	🔽 Gauss 👻	22.5 20.0	20.6	10 %	 Automatic Manual 				
4 {110}<001> goss -	🗹 Gauss 👻	20.7 21.7	21.3	4 %					
5 { 1 3 2}< 6 -4 3> S-1 👻	🗹 Gauss 👻	21.6 20.0	21.6	3 %	Max. Iteration Number : 🚺 1,000 📑				
6 { 2 3 1 }< 3 −4 6 > S−2 🚽	🗹 Gauss 👻	20.8 20.2	20.8	3 %	Max. Fit Error % (*1000) : 📃 100 📑				
7 { 2 1 3}< -3 -6 4> S-3 -	🔽 Gauss 👻	20.9 20.4	21.0	3 %					
8 { 2 3 1 }< -3 4 -6 > S-4	🗹 Gauss 🖃	21.0 20.4	21.1	3 %					
9 {111} 01-1>	🔽 Gauss 👻	21.1 20.4	20.5	3 %	Fit Error% (*1000) : 50638.				
10 { 1 1 0 × 1 -1 2 > brass 🗸	🗹 Gauss 👻	21.2 21.3	21.2	5 %	Fit Calculation Progress				
Image: Max. Orientation Set Set from Database (sort by Save Current Set Background 16 %									
Change Initial Parameters Fix Angles Fix Fractions Start Volume Fraction Calculation View Report Exit and Show Exit									

順位1. Copper と $\{110\} < 1-11 >$ はほぼ同一

順位3.S(SはS-1からS-4の合計)

- 順位4. Cube
- 順位5. Brass
- 順位6. Goss

方位密度に4:2:1の重み付けと比較すると順位4まで一致する。

MTEX 解析結果

VolumeFraction 結果

